scholarly journals Thermodynamic stability of the stationary Lifshitz black hole of new massive gravity

2019 ◽  
Vol 79 (12) ◽  
Author(s):  
K. Kolev ◽  
K. Staykov ◽  
T. Vetsov

AbstractIn this paper we investigate the thermodynamic properties of the stationary Lifshitz black hole solution of New Massive Gravity. We study the thermodynamic stability from local and global point of view. We also consider the space of equilibrium states for the solution within the framework of thermodynamic information geometry. By investigating the proper thermodynamic metrics and their curvature invariants we find a set of restrictions on the parameter space and the critical points indicating phase transitions of the system. We confirm our findings by analytical analysis of the geodesics on the space of equilibrium states.

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Yiwen Han ◽  
XiaoXiong Zeng

We first review Weinhold information geometry and Ruppeiner information geometry of 3D charged-dilaton black hole. Then, we use the Legendre invariant to introduce a 2-dimensional thermodynamic metric in the space of equilibrium states, which becomes singular at those points. According to the analysis of the heat capacities, these points are the places where phase transitions occur. This result is valid for the black hole, therefore, provides a geometrothermodynamics description of black hole phase transitions in terms of curvature singularities.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Daniele Gregoris ◽  
Yen Chin Ong ◽  
Bin Wang

AbstractDifferent theories of gravity can admit the same black hole solution, but the parameters usually have different physical interpretations. In this work we study in depth the linear term $$\beta r$$ β r in the redshift function of black holes, which arises in conformal gravity, de Rham–Gabadadze–Tolley (dRGT) massive gravity, f(R) gravity (as approximate solution) and general relativity. Geometrically we quantify the parameter $$\beta $$ β in terms of the curvature invariants. Astrophysically we found that $$\beta $$ β can be expressed in terms of the cosmological constant, the photon orbit radius and the innermost stable circular orbit (ISCO) radius. The metric degeneracy can be broken once black hole thermodynamics is taken into account. Notably, we show that under Hawking evaporation, different physical theories with the same black hole solution (at the level of the metric) can lead to black hole remnants with different values of their physical masses with direct consequences on their viability as dark matter candidates. In particular, the mass of the graviton in massive gravity can be expressed in terms of the cosmological constant and of the formation epoch of the remnant. Furthermore the upper bound of remnant mass can be estimated to be around $$0.5 \times 10^{27}$$ 0.5 × 10 27 kg.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yun Soo Myung

We investigate thermodynamics of the BTZ black hole in new massive gravity explicitly. Form2l2>1/2withm2being the mass parameter of fourth-order terms andl2AdS3curvature radius, the Hawking-Page phase transition occurs between the BTZ black hole and AdS (thermal) soliton. Form2l2<1/2, however, this transition unlikely occurs but a phase transition between the BTZ black hole and the massless BTZ black hole is possible to occur. We may call the latter the inverse Hawking-Page phase transition and this transition is favored in the new massive gravity.


2018 ◽  
Vol 27 (04) ◽  
pp. 1850048
Author(s):  
Xudong Meng ◽  
Ruihong Wang

We study the thermodynamic properties of the black hole derived in Hořava–Lifshitz (HL) gravity without the detailed-balance condition. The parameter [Formula: see text] in the HL black hole plays the same role as that of the electric charge in the Reissner–Nordström-anti-de Sitter (RN-AdS) black hole. By analogy, we treat the parameter [Formula: see text] as the thermodynamic variable and obtain the first law of thermodynamics for the HL black hole. Although the HL black hole and the RN-AdS black hole have the similar mass and temperature, due to their very different entropy, the two black holes have very different thermodynamic properties. By calculating the heat capacity and the free energy, we analyze the thermodynamic stability of the HL black hole.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Alexis Larrañaga ◽  
Natalia Herrera ◽  
Juliana Garcia

The thermodynamics of the noncommutative Schwarzschild black hole is reformulated within the context of the recently developed formalism of geometrothermodynamics (GTD). Using a thermodynamic metric which is invariant with respect to Legendre transformations, we determine the geometry of the space of equilibrium states and show that phase transitions, which correspond to divergencies of the heat capacity, are represented geometrically as singularities of the curvature scalar. This further indicates that the curvature of the thermodynamic metric is a measure of thermodynamic interaction.


Author(s):  
Sergey Kruglov

An exact spherically symmetric and magnetically charged black hole solution in 4D Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics (NED) is obtained. The NED Lagrangian is given by ${\cal L}_{NED} = -{\cal F}/(1+\sqrt[4]{2\beta{\cal F}})$, where ${\cal F}$ is the field invariant. We study the thermodynamics calculating the Hawking temperature and the heat capacity of the black hole. The phase transitions take place when the Hawking temperature has an extremum and the heat capacity is singular. We demonstrate that black holes are thermodynamically stable in some range of event horizon radii where the heat capacity is positive. The BH shadow radii are calculated. It is shown that when increasing the nonlinearity parameter $\beta$ the BH shadow radius is decreased.


2019 ◽  
Vol 34 (35) ◽  
pp. 1950231 ◽  
Author(s):  
M. Chabab ◽  
H. El Moumni ◽  
S. Iraoui ◽  
K. Masmar

The phase structure of charged anti-de Sitter black hole in massive gravity is investigated using the unstable circular photon orbits formalism, concretely we establish a direct link between the null geodesics and the critical behavior thermodynamic of such black hole solution. Our analysis reveals that the radius and the impact parameter corresponding to the unstable circular orbits can be used to probe the thermodynamic phase structure. We also show that the latter are key quantities to characterize the order of Van der Waals-like phase transition. Namely, we found a critical exponent around [Formula: see text]. All these results support further that the photon trajectories can be used as a useful and crucial tool to probe the thermodynamic black holes criticality.


2019 ◽  
Vol 35 (07) ◽  
pp. 2050029
Author(s):  
Amritendu Haldar ◽  
Ritabrata Biswas

In this paper, we consider the five-dimensional Myers–Perry black hole solution to study the thermodynamic properties and compare this with the thermodynamic behaviors of generalized uncertainty principle (GUP)-induced Myers–Perry solution. We study the existence of remnant quantities. Stability criteria are studied by observing the natures of temperature growth and sign changes in specific heat. We try to locate phase transitions. Moreover, we study the corresponding physical range for the GUP parameter and try to justify the value with the data predicted by different observations.


Author(s):  
R P Singh ◽  
B K Singh ◽  
B R K Gupta ◽  
S Sachan

The Bardeen black hole solution is the first spherically symmetric regular black hole based on the Sakharov and Gliner proposal which is the modification of the Schwarzschild black hole. We present the Bardeen black hole solution in presence of the dRGT massive gravity, which is regular everywhere in the presence of a nonlinear source. The obtained solution interpolates with the Bardeen black hole in the absence of massive gravity parameter and the Schwarzschild black hole in the limit of magnetic charge g=0. We investigate the thermodynamical quantities viz. mass (M), temperature (T), entropy (S) and free energy (F) in terms of horizon radius for both canonical and grand canonical ensembles. We check the local and global stability of the obtained solution by studying the heat capacity and free energy. The heat capacity flips the sign at r = r<sub>c</sub>. The black hole is thermodynamically stable with positive heat capacity C>0 for i.e., globally preferred with negative free energy F < 0. In addition, we also study the phase structure of the obtained solution in both ensembles.


Sign in / Sign up

Export Citation Format

Share Document