scholarly journals Range of novel black hole phase transitions via massive gravity: Triple points and N -fold reentrant phase transitions

2020 ◽  
Vol 101 (8) ◽  
Author(s):  
A. Dehghani ◽  
S. H. Hendi ◽  
R. B. Mann
2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yun Soo Myung

We investigate thermodynamics of the BTZ black hole in new massive gravity explicitly. Form2l2>1/2withm2being the mass parameter of fourth-order terms andl2AdS3curvature radius, the Hawking-Page phase transition occurs between the BTZ black hole and AdS (thermal) soliton. Form2l2<1/2, however, this transition unlikely occurs but a phase transition between the BTZ black hole and the massless BTZ black hole is possible to occur. We may call the latter the inverse Hawking-Page phase transition and this transition is favored in the new massive gravity.


Author(s):  
Muhammad Yasir ◽  
Kazuharu Bamba ◽  
Abdul Jawad

We consider the Hairy black hole of dimensionally continued gravity with power-Yang–Mills magnetic source and Lorentz symmetry violating Bañados, Teitelboim and Zanelli (BTZ) black hole in massive gravity. We utilize the general form of first law of black hole thermodynamics and compute different thermodynamic quantities. Keeping in mind the importance of negative cosmological constant [Formula: see text], we derive corresponding equations of state and discuss the phase transitions which is comparable with chemical Van der Waals fluid. We also find out the critical points and observe that system exhibits first-order small as well as large black holes phase transitions.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Ming Zhang ◽  
De-Cheng Zou ◽  
Rui-Hong Yue

Motivated by recent developments of black hole thermodynamics in de Rham, Gabadadze, and Tolley (dRGT) massive gravity, we study the critical behaviors of topological Anti-de Sitter (AdS) black holes in the presence of Born-Infeld nonlinear electrodynamics. Here the cosmological constant appears as a dynamical pressure of the system and its corresponding conjugate quantity is interpreted as thermodynamic volume. This shows that, besides the Van der Waals-like SBH/LBH phase transitions, the so-called reentrant phase transition (RPT) appears in four-dimensional space-time when the coupling coefficients cim2 of massive potential and Born-Infeld parameter b satisfy some certain conditions. In addition, we also find the triple critical points and the small/intermediate/large black hole phase transitions for d=5.


2015 ◽  
Vol 93 (9) ◽  
pp. 999-1002 ◽  
Author(s):  
David Kubizňák ◽  
Robert B. Mann

The mass of a black hole has traditionally been identified with its energy. We describe a new perspective on black hole thermodynamics, one that identifies the mass of a black hole with chemical enthalpy, and the cosmological constant as thermodynamic pressure. This leads to an understanding of black holes from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. Both charged and rotating black holes exhibit novel chemical-type phase behaviour, hitherto unseen.


2020 ◽  
Vol 35 (22) ◽  
pp. 2050120 ◽  
Author(s):  
Pavan Kumar Yerra ◽  
Chandrasekhar Bhamidipati

Using the new normalized thermodynamic scalar curvature, we investigate the microstructures and phase transitions of black holes in massive gravity for horizons of various topologies. We find that the graviton mass enhances the repulsive interactions of small black holes and weakens the attractive interactions of large black holes, with possibility of new repulsive regions for microstructures in phase space. In addition, the repulsive interactions of small black hole are strong for spherical topology, followed by flat and hyperbolic topology; while, the attractive interactions of large black hole are strong for hyperbolic topology, followed by flat and weakest for spherical topology.


2019 ◽  
Vol 79 (12) ◽  
Author(s):  
K. Kolev ◽  
K. Staykov ◽  
T. Vetsov

AbstractIn this paper we investigate the thermodynamic properties of the stationary Lifshitz black hole solution of New Massive Gravity. We study the thermodynamic stability from local and global point of view. We also consider the space of equilibrium states for the solution within the framework of thermodynamic information geometry. By investigating the proper thermodynamic metrics and their curvature invariants we find a set of restrictions on the parameter space and the critical points indicating phase transitions of the system. We confirm our findings by analytical analysis of the geodesics on the space of equilibrium states.


2016 ◽  
Vol 26 (06) ◽  
pp. 1750046
Author(s):  
Yan Peng ◽  
Tao Chen ◽  
Guohua Liu ◽  
Pengwei Ma

We generalize the holographic superconductor model with dark matter sector by including the Stückelberg mechanism in the four-dimensional anti-de Sitter (AdS) black hole background away from the probe limit. We study effects of the dark matter sector on the [Formula: see text]-wave scalar condensation and find that the dark matter sector affects the critical phase transition temperature and also the order of phase transitions. At last, we conclude that the dark matter sector brings richer physics in this general metal/superconductor system.


2016 ◽  
Vol 2016 (10) ◽  
pp. 103E02 ◽  
Author(s):  
Tsutomu Kobayashi ◽  
Masaru Siino ◽  
Masahide Yamaguchi ◽  
Daisuke Yoshida

Sign in / Sign up

Export Citation Format

Share Document