scholarly journals Torsion-induced gravitational $$\theta $$ term and gravitoelectromagnetism

2020 ◽  
Vol 80 (11) ◽  
Author(s):  
Athanasios Chatzistavrakidis ◽  
Georgios Karagiannis ◽  
Peter Schupp

AbstractMotivated by the analogy between a weak field expansion of general relativity and Maxwell’s laws of electrodynamics, we explore physical consequences of a parity violating $$\theta $$ θ term in gravitoelectromagnetism. This is distinct from the common gravitational $$\theta $$ θ term formed as a square of the Riemann tensor. Instead it appears as a product of the gravitoelectric and gravitomagnetic fields in the Lagrangian, similar to the Maxwellian $$\theta $$ θ term. We show that this sector can arise from a quadratic torsion term in nonlinear gravity. In analogy to the physics of topological insulators, the torsion-induced $$\theta $$ θ parameter can lead to excess mass density at the interface of regions where $$\theta $$ θ varies and consequently it generates a correction to Newton’s law of gravity. We discuss also an analogue of the Witten effect for gravitational dyons.

1991 ◽  
Vol 9 (1) ◽  
pp. 78-79
Author(s):  
Peter Pockley

A few days ago a prominent physicist, Professor Frank Stacey of the University of Queensland, made a public statement on his retirement that he was burying a theory. He had believed he had measured a new gravitational constant for close objects. Over 12 years he and colleagues in Australia and overseas had tried to confirm a theory of a fifth fundamental force of nature to explain the observations. His claim had gained a great deal of publicity as, if true, it would have extended Newton’s law of gravity and Einstein’s theory of general relativity.


Author(s):  
V. G. Gurzadyan ◽  
A. A. Kocharyan ◽  
A. Stepanian

AbstractThe evolution of galaxy clusters can be affected by the repulsion described by the cosmological constant. This conclusion is reached within the modified weak-field General Relativity approach where the cosmological constant $$\varLambda $$Λ enables to describe the common nature of the dark matter and the dark energy. Geometrical methods of theory of dynamical systems and the Ricci curvature criterion are used to reveal the difference in the instability properties of galaxy clusters which determine their evolutionary paths. Namely, it is shown that the clusters determined by gravity with $$\varLambda $$Λ-repulsion tend to become even more unstable than those powered only by Newtonian gravity, the effect to be felt at cosmological time scales.


Author(s):  
Andrew M. Steane

This is a textbook on general relativity and cosmology for a physics undergraduate or an entry-level graduate course. General relativity is the main subject; cosmology is also discussed in considerable detail (enough for a complete introductory course). Part 1 introduces concepts and deals with weak-field applications such as gravitation around ordinary stars, gravimagnetic effects and low-amplitude gravitational waves. The theory is derived in detail and the physical meaning explained. Sources, energy and detection of gravitational radiation are discussed. Part 2 develops the mathematics of differential geometry, along with physical applications, and discusses the exact treatment of curvature and the field equations. The electromagnetic field and fluid flow are treated, as well as geodesics, redshift, and so on. Part 3 then shows how the field equation is solved in standard cases such as Schwarzschild-Droste, Reissner-Nordstrom, Kerr, and internal stellar structure. Orbits and related phenomena are obtained. Black holes are described in detail, including horizons, wormholes, Penrose process and Hawking radiation. Part 4 covers cosmology, first in terms of metric, then dynamics, structure formation and observational methods. The meaning of cosmic expansion is explained at length. Recombination and last scattering are calculated, and the quantitative analysis of the CMB is sketched. Inflation is introduced briefly but quantitatively. Part 5 is a brief introduction to classical field theory, including spinors and the Dirac equation, proceeding as far as the Einstein-Hilbert action. Throughout the book the emphasis is on making the mathematics as clear as possible, and keeping in touch with physical observations.


Formulae are given for the field of a sphere of constant gravitational mass density.


2009 ◽  
Vol 5 (S261) ◽  
pp. 198-199
Author(s):  
Clifford M. Will

AbstractWe review the experimental evidence for Einstein's general relativity. A variety of high precision null experiments confirm the Einstein Equivalence Principle, which underlies the concept that gravitation is synonymous with spacetime geometry, and must be described by a metric theory. Solar system experiments that test the weak-field, post-Newtonian limit of metric theories strongly favor general relativity. Binary pulsars test gravitational-wave damping and aspects of strong-field general relativity. During the coming decades, tests of general relativity in new regimes may be possible. Laser interferometric gravitational-wave observatories on Earth and in space may provide new tests via precise measurements of the properties of gravitational waves. Future efforts using X-ray, infrared, gamma-ray and gravitational-wave astronomy may one day test general relativity in the strong-field regime near black holes and neutron stars.


2018 ◽  
Vol 27 (06) ◽  
pp. 1841012 ◽  
Author(s):  
Victor Berezin ◽  
Vyacheslav Dokuchaev ◽  
Yury Eroshenko

The spherically symmetric thin shells are the nearest generalizations of the point-like particles. Moreover, they serve as the simple sources of the gravitational fields both in General Relativity and much more complex quadratic gravity theories. We are interested in the special and physically important case when all the quadratic in curvature tensor (Riemann tensor) and its contractions (Ricci tensor and scalar curvature) terms are present in the form of the square of Weyl tensor. By definition, the energy–momentum tensor of the thin shell is proportional to Diracs delta-function. We constructed the theory of the spherically symmetric thin shells for three types of gravitational theories with the shell: (1) General Relativity; (2) Pure conformal (Weyl) gravity where the gravitational part of the total Lagrangian is just the square of the Weyl tensor; (3) Weyl–Einstein gravity. The results are compared with these in General Relativity (Israel equations). We considered in detail the shells immersed in the vacuum. Some peculiar properties of such shells are found. In particular, for the traceless ([Formula: see text] massless) shell, it is shown that their dynamics cannot be derived from the matching conditions and, thus, is completely arbitrary. On the contrary, in the case of the Weyl–Einstein gravity, the trajectory of the same type of shell is completely restored even without knowledge of the outside solution.


2019 ◽  
Vol 34 (35) ◽  
pp. 1975002
Author(s):  
A. Stepanian

It is shown that the concept of “negative mass” introduced by Farnes [Astron. Astrophys. 620, A92 (2018)] to describe the dark sector within a unifying theory with the negative cosmological constant contradicts both the essence of the General Relativity (GR) and the available observational data. A viable model with modified weak-field GR is mentioned.


Science ◽  
2018 ◽  
Vol 360 (6395) ◽  
pp. 1342-1346 ◽  
Author(s):  
Thomas E. Collett ◽  
Lindsay J. Oldham ◽  
Russell J. Smith ◽  
Matthew W. Auger ◽  
Kyle B. Westfall ◽  
...  

Einstein’s theory of gravity, General Relativity, has been precisely tested on Solar System scales, but the long-range nature of gravity is still poorly constrained. The nearby strong gravitational lens ESO 325-G004 provides a laboratory to probe the weak-field regime of gravity and measure the spatial curvature generated per unit mass, γ. By reconstructing the observed light profile of the lensed arcs and the observed spatially resolved stellar kinematics with a single self-consistent model, we conclude that γ = 0.97 ± 0.09 at 68% confidence. Our result is consistent with the prediction of 1 from General Relativity and provides a strong extragalactic constraint on the weak-field metric of gravity.


Sign in / Sign up

Export Citation Format

Share Document