scholarly journals Type-I thermal leptogenesis in $$Z_3$$-symmetric three Higgs doublet model

2020 ◽  
Vol 80 (11) ◽  
Author(s):  
Indrani Chakraborty ◽  
Himadri Roy

AbstractOur present work explores the possibility of neutrino mass generation through Type-I see-saw mechanism and provides an explanation of the baryon asymmetry of the Universe via thermal leptogenesis in the framework of a $$Z_3$$ Z 3 -symmetric three Higgs doublet model (3HDM) augmented with three right-handed neutrinos. Here the thermal leptogenesis is initiated by the out-of-equilibrium decay of the lightest heavy neutrino $$N_1$$ N 1 . The constraints arising out of the scalar sector put strong bound on the model parameter $$\tan \beta $$ tan β , which in turn takes part in the computation of the lepton asymmetry $$\epsilon $$ ϵ . Lepton asymmetry being converted partially into the baryon asymmetry by electroweak sphelaron processes, will account for the required baryon asymmetry satisfying the current data. We therefore analyse the parameter space consistent with the constraints arising from neutrino oscillation, lepton asymmetry and baryon asymmetry together, last one turning out to be the most stringent one.

2013 ◽  
Vol 2013 ◽  
pp. 1-20 ◽  
Author(s):  
S. T. Petcov

The compelling experimental evidences for oscillations of solar, reactor, atmospheric, and accelerator neutrinos imply the existence of 3-neutrino mixing in the weak charged lepton current. The current data on the 3-neutrino mixing parameters are summarised and the phenomenology of 3-νmixing is reviewed. The properties of massive Majorana neutrinos and of their various possible couplings are discussed in detail. Two models of neutrino mass generation with massive Majorana neutrinos—the type I see-saw and the Higgs triplet model—are briefly reviewed. The problem of determining the nature, Dirac or Majorana, of massive neutrinos is considered. The predictions for the effective Majorana mass|〈m〉|in neutrinoless double-beta-((ββ)0ν-) decay in the case of 3-neutrino mixing and massive Majorana neutrinos are summarised. The physics potential of the experiments, searching for(ββ)0ν-decay for providing information on the type of the neutrino mass spectrum, on the absolute scale of neutrino masses, and on the Majorana CP-violation phases in the PMNS neutrino mixing matrix, is also briefly discussed. The opened questions and the main goals of future research in the field of neutrino physics are outlined.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Stefan Antusch ◽  
Oliver Fischer ◽  
A. Hammad ◽  
Christiane Scherb

Abstract Extra Higgs states appear in various scenarios beyond the current Standard Model of elementary particles. If discovered at the LHC or future colliders, the question will arise whether CP is violated or conserved in the extended scalar sector. An unambiguous probe of (indirect) CP violation would be the observation that one of the extra Higgs particles is an admixture of a CP-even and a CP-odd state. We discuss the possibility to discover scalar CP violation in this way at the high-luminosity (HL) phase of the LHC. We focus on the Two-Higgs Doublet Model of type I, where we investigate its currently allowed parameter region. Considering a benchmark point that is compatible with the current constraints but within reach of the HL-LHC, we study the prospects of determining the CP property of an extra neutral Higgs state H via the angular distribution of final states in the decay H→$$ \tau \overline{\tau} $$ τ τ ¯ . The analysis is performed at the reconstructed level, making use of a Boosted Decision Tree for efficient signal-background separation and a shape analysis for rejecting a purely CP-even or odd nature of H.


2019 ◽  
Vol 34 (08) ◽  
pp. 1950047
Author(s):  
Marco Chianese ◽  
Damiano F. G. Fiorillo ◽  
Gennaro Miele ◽  
Stefano Morisi

One of the main purposes of SHiP experiment is to shed light on neutrino mass generation mechanisms like the so-called seesaw. We consider a minimal type-I seesaw neutrino mass mechanism model with two heavy neutral leptons (right-handed or sterile neutrinos) with arbitrary masses. Extremely high active-sterile mixing angle requires a correlation between the phases of the Dirac neutrino couplings. Actual experimental limits on the half-life of neutrinoless double beta decay [Formula: see text]-rate on the active-sterile mixing angle are not significative in constraining the masses or the mixing measurable by SHiP.


2018 ◽  
Vol 98 (9) ◽  
Author(s):  
Abdesslam Arhrib ◽  
Wei-Chih Huang ◽  
Raymundo Ramos ◽  
Yue-Lin Sming Tsai ◽  
Tzu-Chiang Yuan

2014 ◽  
Vol 29 (40) ◽  
pp. 1450212 ◽  
Author(s):  
Ernesto A. Matute

An extension of the Standard Model (SM) is studied in which two right-handed (RH) neutrinos per generation are incorporated, but considering the hypothesis of the symmetry of lepton and quark contents in order to deprive the number of RH neutrinos of freedom, generate Dirac neutrinos and accommodate naturally tiny values for their masses. The high scale type-I seesaw regime is applied to the first, ordinary RH neutrino, whereas a low scale pseudo-Dirac scenario is used for the second, adulterant RH neutrino, implying that the first RH neutrino decouples at the high scale, while the second RH neutrino survives down to the low scale to pair off in a Dirac-like form with the corresponding left-handed (LH) neutrino. The small mass and couplings of this extra RH neutrino are explained by means of the statement of the symmetry of fermionic content, only regarded as a guideline to the natural choice of parameters since it is not a proper symmetry in the Lagrangian.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
M. K. Parida ◽  
Rajesh Satpathy

Very recently novel implementation of type-II seesaw mechanism for neutrino mass has been proposed in SU(5) grand unified theory with a number of desirable new physical phenomena beyond the standard model. Introducing heavy right-handed neutrinos and extra fermion singlets, in this work we show how the type-I seesaw cancellation mechanism works in this SU(5) framework. Besides predicting verifiable LFV decays, we further show that the model predicts dominant double beta decay with normal hierarchy or inverted hierarchy of active light neutrino masses in concordance with cosmological bound. In addition a novel right-handed neutrino mass generation mechanism, independent of type-II seesaw predicted mass hierarchy, is suggested in this work.


2010 ◽  
Vol 25 (23) ◽  
pp. 4325-4337 ◽  
Author(s):  
S. T. PETCOV

The phenomenology of 3-neutrino mixing and of the related Dirac and Majorana leptonic CP violation is reviewed. The leptogenesis scenario of generation of the baryon asymmetry of the Universe, which is based on the see-saw mechanism of neutrino mass generation, is considered. The results showing that the CP violation necessary for the generation of the baryon asymmetry of the Universe in leptogenesis can be due exclusively to the Dirac and/or Majorana CP-violating phase(s) in the neutrino mixing matrix U are briefly reviewed.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
A. Bednyakov ◽  
A. Pikelner

Abstract We consider general renormalizable scalar field theory and derive six-loop beta functions for all parameters in d = 4 dimensions within the $$ \overline{\mathrm{MS}} $$ MS ¯ -scheme. We do not explicitly compute relevant loop integrals but utilize O(n)-symmetric model counter-terms available in the literature. We consider dimensionless couplings and parameters with a mass scale, ranging from the trilinear self-coupling to the vacuum energy. We use obtained results to extend renormalization-group equations for several vector, matrix, and tensor models to the six-loop order. Also, we apply our general expressions to derive new contributions to beta functions and anomalous dimensions in the scalar sector of the Two-Higgs-Doublet Model.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Amit Chakraborty ◽  
Stefano Moretti ◽  
Claire H. Shepherd-Themistocleous ◽  
Harri Waltari

Abstract We study displaced signatures of sneutrino pairs potentially emerging at the Large Hadron Collider (LHC) in a Next-to-Minimal Supersymmetric Standard Model supplemented with right-handed neutrinos triggering a Type-I seesaw mechanism. We show how such signatures can be established through a heavy Higgs portal, the sneutrinos then decaying to charged leptons and charginos giving rise to further leptons or hadrons. We finally illustrate how the Yukawa parameters of neutrinos can be extracted by measuring the lifetime of the sneutrino from the displaced vertices, thereby characterising the dynamics of the underlying mechanism of neutrino mass generation. We show our numerical results for the case of both the current and High-Luminosity LHC.


Sign in / Sign up

Export Citation Format

Share Document