scholarly journals Towards unification of quark and lepton flavors in $$A_4$$ modular invariance

2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Hiroshi Okada ◽  
Morimitsu Tanimoto

AbstractWe study quark and lepton mass matrices in the $$A_4$$ A 4 modular symmetry towards the unification of the quark and lepton flavors. We adopt modular forms of weights 2 and 6 for quarks and charged leptons, while we use modular forms of weight 4 for the neutrino mass matrix which is generated by the Weinberg operator. We obtain the successful quark mass matrices, in which the down-type quark mass matrix is constructed by modular forms of weight 2, but the up-type quark mass matrix is constructed by modular forms of weight 6. The viable region of $$\tau $$ τ is close to $$\tau =i$$ τ = i . Lepton mass matrices also work well at nearby $$\tau =i$$ τ = i , which overlaps with the one of the quark sector, for the normal hierarchy of neutrino masses. In the common $$\tau $$ τ region for quarks and leptons, the predicted sum of neutrino masses is 87–120 meV taking account of its cosmological bound. Since both the Dirac CP phase $$\delta _{CP}^\ell $$ δ CP ℓ and $$\sin ^2\theta _{23}$$ sin 2 θ 23 are correlated with the sum of neutrino masses, improving its cosmological bound provides crucial tests for our scheme as well as the precise measurement of $$\sin ^2\theta _{23}$$ sin 2 θ 23 and $$\delta _{CP}^\ell $$ δ CP ℓ . The effective neutrino mass of the $$0\nu \beta \beta $$ 0 ν β β decay is $$\langle m_{ee}\rangle =15$$ ⟨ m ee ⟩ = 15 –31 meV. It is remarked that the modulus $$\tau $$ τ is fixed at nearby $$\tau =i$$ τ = i in the fundamental domain of SL(2, Z), which suggests the residual symmetry $$Z_2$$ Z 2 in the quark and lepton mass matrices. The inverted hierarchy of neutrino masses is excluded by the cosmological bound of the sum of neutrino masses.

2011 ◽  
Vol 26 (08) ◽  
pp. 567-574 ◽  
Author(s):  
ASAN DAMANIK

We construct a neutrino mass matrix Mν via a seesaw mechanism with perturbed invariant under a cyclic permutation by introducing a parameter δ into the diagonal elements of Mν with the assumption that trace of the perturbed Mν is equal to trace of the unperturbed Mν. We found that the perturbed neutrino mass matrices Mν can predict the mass-squared difference [Formula: see text] with the possible hierarchy of neutrino mass is normal or inverted hierarchy. By using the advantages of the mass-squared differences and mixing parameters data from neutrino oscillation experiments, we then have neutrino masses in inverted hierarchy with masses: |m1| = 0.101023 eV , |m2| = 0.101428 eV and |m3| = 0.084413 eV .


2003 ◽  
Vol 18 (20) ◽  
pp. 1355-1365 ◽  
Author(s):  
Bipin R. Desai ◽  
Alexander R. Vaucher ◽  
D. P. Roy

Out of the 15 3 × 3 neutrino mass matrices with two texture zeros, seven are compatible with the neutrino oscillation data. While two of them correspond to hierarchical neutrino masses and 1 to an inverted hierarchy, the remaining four correspond to degenerate masses. Moreover only the first three of the seven mass matrices are compatible with the maximal mixing angle of atmospheric neutrino and hence favored by data. We give compact expressions for mass matrices in terms of mass eigenvalues and study phenomenological implications for the seven cases. Similarity of the textures of the neutrino, charged-lepton mass matrices with those of quark mass matrices is also discussed.


2019 ◽  
Vol 34 (19) ◽  
pp. 1950098 ◽  
Author(s):  
Teruyuki Kitabayashi

As the first topic, we propose a new parametrization of the complex Yukawa matrix in the scotogenic model. The new parametrization is compatible with the particle data group parametrization of the neutrino sector. Some analytical expressions for the neutrino masses with the new parametrization are shown. As the second topic, we consider the phenomenology of the scotogenic model with the one-zero-textures of the neutrino flavor mass matrix. One of the six patterns of the neutrino mass matrix is favorable for the real Yukawa matrix. On the other hand, for the complex Yukawa matrix, five of the six patterns are compatible with observations of the neutrino oscillations, dark matter relic abundance and branching ratio of the [Formula: see text] process.


2011 ◽  
Vol 26 (07) ◽  
pp. 501-514 ◽  
Author(s):  
S. DEV ◽  
SHIVANI GUPTA ◽  
RADHA RAMAN GAUTAM

We study the existence of one/two texture zeros or one/two vanishing minors in the neutrino mass matrix with μτ symmetry. In the basis where the charged lepton mass matrix and the Dirac neutrino mass matrix are diagonal, the one/two zeros or one/two vanishing minors on the right-handed Majorana mass matrix having μτ symmetry will propagate via seesaw mechanism as one/two vanishing minors or one/two texture zeros in the neutrino mass matrix with μτ symmetry respectively. It is found that only five such texture structures of the neutrino mass matrix are phenomenologically viable. For tribimaximal mixing, these texture structures reduce the number of free parameters to one. Interesting predictions are obtained for the effective Majorana mass Mee, the absolute mass scale and the Majorana-type CP violating phases.


2014 ◽  
Vol 29 (33) ◽  
pp. 1450179
Author(s):  
G. K. Leontaris ◽  
N. D. Vlachos

We investigate the possibility of expressing the charged leptons and neutrino mass matrices as linear combinations of elements of a single finite group. Constraints imposed on the resulting mixing matrix by current data restrict the group types, but allow a nonzero value for the θ13 mixing angle.


2016 ◽  
Vol 31 (04n05) ◽  
pp. 1650002
Author(s):  
Debasish Borah

We revisit the possibility of relating lepton mixing angles with lepton mass hierarchies in a model-independent way. Guided by the existence of such relations in the quark sector, we first consider all the mixing angles, both in charged lepton and neutrino sectors to be related to the respective mass ratios. This allows us to calculate the leptonic mixing angles observed in neutrino oscillations as functions of the lightest neutrino mass. We show that for both normal and inverted hierarchical neutrino masses, this scenario does not give rise to correct leptonic mixing angles. We then show that correct leptonic mixing angles can be generated with normal hierarchical neutrino masses if the relation between mixing angle and mass ratio is restricted to 1–2 and 1–3 mixing in both charged lepton and neutrino sectors leaving the 2–3 mixing angles as free parameters. We then restrict the lightest neutrino mass as well as the difference between 2–3 mixing angles in charged lepton and neutrino sectors from the requirement of producing correct leptonic mixing angles. We constrain the lightest neutrino mass to be around 0.002 eV and leptonic Dirac CP phase [Formula: see text] such that [Formula: see text]. We also construct the leptonic mass matrices in terms of 2–3 mixing angles and lightest neutrino mass and briefly comment on the possibility of realizing texture zeros in the neutrino mass matrix.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Di Zhang

Abstract We propose a leptoquark model with two scalar leptoquarks $$ {S}_1\left(\overline{3},1,\frac{1}{3}\right) $$ S 1 3 ¯ 1 1 3 and $$ {\tilde{R}}_2\left(3,2,\frac{1}{6}\right) $$ R ˜ 2 3 2 1 6 to give a combined explanation of neutrino masses, lepton flavor mixing and the anomaly of muon g − 2, satisfying the constraints from the radiative decays of charged leptons. The neutrino masses are generated via one-loop corrections resulting from a mixing between S1 and $$ {\tilde{R}}_2 $$ R ˜ 2 . With a set of specific textures for the leptoquark Yukawa coupling matrices, the neutrino mass matrix possesses an approximate μ-τ reflection symmetry with (Mν)ee = 0 only in favor of the normal neutrino mass ordering. We show that this model can successfully explain the anomaly of muon g − 2 and current experimental neutrino oscillation data under the constraints from the radiative decays of charged leptons.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Ya Zhao ◽  
Hong-Hao Zhang

Abstract We study the textures of SM fermion mass matrices and their mixings in a supersymmetric adjoint SU(5) Grand Unified Theory with modular S4 being the horizontal symmetry. The Yukawa entries of both quarks and leptons are expressed by modular forms with lower weights. Neutrino sector has an adjoint SU(5) representation 24 as matter superfield, which is a triplet of S4. The effective light neutrino masses is generated through Type-III and Type-I seesaw mechanism. The only common complex parameter in both charged fermion and neutrino sectors is modulus τ . Down-type quarks and charged leptons have the same joint effective operators with adjoint scalar in them, and their mass discrepancy in the same generation depends on Clebsch-Gordan factor. Especially for the first two generations the respective Clebsch-Gordan factors made the double Yukawa ratio 𝒴d𝒴μ/𝒴e𝒴s = 12, in excellent agreement with the experimental result. We reproduce proper CKM mixing parameters and all nine Yukawa eigenvalues of quarks and charged leptons. Neutrino masses and MNS parameters are also produced properly with normal ordering is preferred.


2012 ◽  
Vol 27 (17) ◽  
pp. 1250091 ◽  
Author(s):  
ASAN DAMANIK

The nonzero and relatively large θ13 have been reported by Daya Bay, T2K, MINOS and Double Chooz Collaborations. In order to accommodate the nonzero θ13, we modified the tribimaximal (TB), bimaxima (BM) and democratic (DC) neutrino mixing matrices. From three modified neutrino mixing matrices, two of them (the modified BM and DC mixing matrices) can give nonzero θ13 which is compatible with the result of the Daya Bay and T2K experiments. The modified TB neutrino mixing matrix predicts the value of θ13 which is greater than the upper bound value of the latest experimental results. By using the modified neutrino mixing matrices and imposing an additional assumption that neutrino mass matrices have two zeros texture, we then obtain the neutrino mass in normal hierarchy when (Mν)22 = (Mν)33 = 0 for the neutrino mass matrix from the modified TB neutrino mixing matrix and (Mν)11 = (Mν)13 = 0 for the neutrino mass matrix from the modified DC neutrino mixing matrix. For these two patterns of neutrino mass matrices, either the atmospheric mass squared difference or the solar mass squared difference can be obtained, but not both of them simultaneously. From four patterns of two zeros texture to be considered on the obtained neutrino mass matrix from the modified BM neutrino mixing matrix, none of them can correctly predict the neutrino mass spectrum (normal or inverted hierarchy).


2017 ◽  
Vol 32 (27) ◽  
pp. 1750168 ◽  
Author(s):  
Mahadev Patgiri ◽  
Priyanka Kumar ◽  
Debojit Sarma

In our work, we study the texture zeros of [Formula: see text] in the minimal extended type-I seesaw (MES) with incorporating one extra gauge singlet field “[Formula: see text]”. The MES models deal with the Dirac neutrino mass matrix [Formula: see text], the right-handed Majorana mass matrix [Formula: see text] and the sterile neutrino mass matrix [Formula: see text]. We carry out the mapping of all possible zero textures of [Formula: see text], [Formula: see text] and [Formula: see text] for phenomenologically predictive cases having total eight zeros of [Formula: see text] and [Formula: see text] studied in the literature. With this motivation, we consider (a) [Formula: see text] scheme, (b) [Formula: see text] scheme and (c) [Formula: see text] scheme, where the digits of a pair represent the number of zeros of [Formula: see text] and [Formula: see text], respectively along with the one zero and two zero textures of [Formula: see text]. There are a large number of possibilities of zeros of fermion mass matrices but the implementation of [Formula: see text] transformations reduces it to a very minimum number of basic structures. Interestingly out of four allowed one zero textures of [Formula: see text] without sterile neutrino, only three cases ([Formula: see text], [Formula: see text] and [Formula: see text]) are allowed in MES mechanism for the [Formula: see text] and [Formula: see text] schemes. We find some correlations for different combination of [Formula: see text], [Formula: see text] and [Formula: see text] on enforcement of zeros. We examined all the correlations under the recent neutrino oscillation data and find that only [Formula: see text] survives while both [Formula: see text] and [Formula: see text] are ruled out. Interestingly the one zero textures inherently represent the inverted hierarchy of the mass ordering of light neutrinos. No two zero textures of [Formula: see text] survive in MES although there are a number of allowed structures phenomenologically. The allowed texture zeros are finally realized using a discrete Abelian flavor symmetry group [Formula: see text] with the extension of standard model to include some scalar fields.


Sign in / Sign up

Export Citation Format

Share Document