scholarly journals Adjoint SU(5) GUT model with modular S4 symmetry

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Ya Zhao ◽  
Hong-Hao Zhang

Abstract We study the textures of SM fermion mass matrices and their mixings in a supersymmetric adjoint SU(5) Grand Unified Theory with modular S4 being the horizontal symmetry. The Yukawa entries of both quarks and leptons are expressed by modular forms with lower weights. Neutrino sector has an adjoint SU(5) representation 24 as matter superfield, which is a triplet of S4. The effective light neutrino masses is generated through Type-III and Type-I seesaw mechanism. The only common complex parameter in both charged fermion and neutrino sectors is modulus τ . Down-type quarks and charged leptons have the same joint effective operators with adjoint scalar in them, and their mass discrepancy in the same generation depends on Clebsch-Gordan factor. Especially for the first two generations the respective Clebsch-Gordan factors made the double Yukawa ratio 𝒴d𝒴μ/𝒴e𝒴s = 12, in excellent agreement with the experimental result. We reproduce proper CKM mixing parameters and all nine Yukawa eigenvalues of quarks and charged leptons. Neutrino masses and MNS parameters are also produced properly with normal ordering is preferred.

2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Hiroshi Okada ◽  
Morimitsu Tanimoto

AbstractWe study quark and lepton mass matrices in the $$A_4$$ A 4 modular symmetry towards the unification of the quark and lepton flavors. We adopt modular forms of weights 2 and 6 for quarks and charged leptons, while we use modular forms of weight 4 for the neutrino mass matrix which is generated by the Weinberg operator. We obtain the successful quark mass matrices, in which the down-type quark mass matrix is constructed by modular forms of weight 2, but the up-type quark mass matrix is constructed by modular forms of weight 6. The viable region of $$\tau $$ τ is close to $$\tau =i$$ τ = i . Lepton mass matrices also work well at nearby $$\tau =i$$ τ = i , which overlaps with the one of the quark sector, for the normal hierarchy of neutrino masses. In the common $$\tau $$ τ region for quarks and leptons, the predicted sum of neutrino masses is 87–120 meV taking account of its cosmological bound. Since both the Dirac CP phase $$\delta _{CP}^\ell $$ δ CP ℓ and $$\sin ^2\theta _{23}$$ sin 2 θ 23 are correlated with the sum of neutrino masses, improving its cosmological bound provides crucial tests for our scheme as well as the precise measurement of $$\sin ^2\theta _{23}$$ sin 2 θ 23 and $$\delta _{CP}^\ell $$ δ CP ℓ . The effective neutrino mass of the $$0\nu \beta \beta $$ 0 ν β β decay is $$\langle m_{ee}\rangle =15$$ ⟨ m ee ⟩ = 15 –31 meV. It is remarked that the modulus $$\tau $$ τ is fixed at nearby $$\tau =i$$ τ = i in the fundamental domain of SL(2, Z), which suggests the residual symmetry $$Z_2$$ Z 2 in the quark and lepton mass matrices. The inverted hierarchy of neutrino masses is excluded by the cosmological bound of the sum of neutrino masses.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
M. Miskaoui ◽  
M. A. Loualidi

Abstract We propose a model of fermion masses and mixings based on SU(5) grand unified theory (GUT) and a D4 flavor symmetry. This is a highly predictive 4D SU(5) GUT with a flavor symmetry that does not contain a triplet irreducible representation. The Yukawa matrices of quarks and charged leptons are obtained after integrating out heavy messenger fields from renormalizable superpotentials while neutrino masses are originated from the type I seesaw mechanism. The group theoretical factors from 24- and 45-dimensional Higgs fields lead to ratios between the Yukawa couplings in agreement with data, while the dangerous proton decay operators are highly suppressed. By performing a numerical fit, we find that the model captures accurately the mixing angles, the Yukawa couplings and the CP phase of the quark sector at the GUT scale. The neutrino masses are generated at the leading order with the prediction of trimaximal mixing while an additional effective operator is required to account for the baryon asymmetry of the universe (BAU). The model is remarkably predictive because only the normal neutrino mass ordering and the lower octant of the atmospheric angle are allowed while the CP conserving values of the Dirac neutrino phase δCP are excluded. Moreover, the predicted values of the effective Majorana mass mββ can be tested at future neutrinoless double beta decay experiments. An analytical and a numerical study of the BAU via the leptogenesis mechanism is performed. We focused on the regions of parameter space where leptogenesis from the lightest right-handed neutrino is successfully realized. Strong correlations between the parameters of the neutrino sector and the observed BAU are obtained.


Author(s):  
Tatsuo Kobayashi ◽  
Yusuke Shimizu ◽  
Kenta Takagi ◽  
Morimitsu Tanimoto ◽  
Takuya H. Tatsuishi

Abstract We present a flavor model with $S_3$ modular invariance in the framework of SU(5) grand unified theory (GUT). The $S_3$ modular forms of weights $2$ and $4$ give the quark and lepton mass matrices with a common complex parameter, the modulus $\tau$. The GUT relation of down-type quarks and charged leptons is imposed by the vacuum expectation value (VEV) of the adjoint 24-dimensional Higgs multiplet in addition to the VEVs of $5$ and $\bar 5$ Higgs multiplets of SU(5). The observed Cabibbo–Kobayashi–Maskawa and Pontecorvo–Maki–Nakagawa–Sakata mixing parameters as well as the mass eigenvalues are reproduced properly. We discuss the leptonic charge–parity phase and the effective mass of the neutrinoless double beta decay with the sum of neutrino masses.


2003 ◽  
Vol 18 (22) ◽  
pp. 3981-3995
Author(s):  
R. N. MOHAPATRA

The present atmospheric neutrino oscillation data viewed within the context of see-saw mechanism for small neutrino masses, requires right handed neutrino masses (MR) around the conventional GUT scale i.e. 1015 to 1016 GeV. This raises a new hierarchy puzzle i.e. why MR≪Mpℓ? This can be interpreted as an indication in favor of new local symmetries around MR. In this paper, we argue that depending on the nature of neutrino mass patterns, this symmetry could either be: (i) the local B-L symmetry arising from a larger symmetry group such as in the left-right symmetric model of weak interactions, grand unified SO(10) models etc. or (ii) a local horizontal symmetry group SU(2)H operating on the fermions of the first two generations which is often invoked to understand the generation puzzles. We discuss some simple consequences of these symmetries and propose experimental for these ideas.


2006 ◽  
Vol 21 (13n14) ◽  
pp. 3015-3020 ◽  
Author(s):  
D. FALCONE

In the context of a typical model for fermion mass matrices, possibly based on the horizontal U (2) symmetry, we explore the effect of the type II seesaw mechanism on lepton mixings. We find that the combined contribution of type I and type II terms is able to explain the large but not maximal 1-2 mixing and the near maximal 2-3 mixing, while the 1-3 mixing angle is predicted to be small.


2011 ◽  
Vol 26 (32) ◽  
pp. 2427-2435 ◽  
Author(s):  
BISWAJIT ADHIKARY ◽  
AMBAR GHOSAL ◽  
PROBIR ROY

Four zero neutrino Yukawa textures in a specified weak basis, combined with μτ symmetry and type-I seesaw, yield a highly constrained and predictive scheme. Two alternately viable 3×3 light neutrino Majorana mass matrices mνA/mνB result with inverted/normal mass ordering. Neutrino masses, Majorana in character and predicted within definite ranges with laboratory and cosmological inputs, will have their sum probed cosmologically. The rate for 0νββ decay, though generally below the reach of planned experiments, could approach it in some parameter region. Departure from μτ symmetry due to RG evolution from a high scale and consequent CP violation, with a Jarlskog invariant whose magnitude could almost reach 6×10-3, are explored.


2009 ◽  
Vol 24 (18n19) ◽  
pp. 3354-3358 ◽  
Author(s):  
H. FRITZSCH

We study a model for the mass matrices of the quarks and leptons. Two of the three flavor mixing angles of the quarks can be calculated in terms of the quark mass ratios. They agree very well with the experiments. We are able to relate the mass eigen values of the charged leptons and of the neutrinos to the mixing angles and can predict the masses of the neutrinos. We find a normal hierarchy -the masses are 0.004 eV, 0.01 eV and 0.05 eV. The atmospheric mixing angle is given by the mass ratios of the charged leptons and the neutrinos. We find 38 degrees, consistent with the experiments. The mixing element, connecting the first neutrino with the electron, is found to be 0.05.


2019 ◽  
Vol 34 (11) ◽  
pp. 1950059 ◽  
Author(s):  
Mahadev Patgiri ◽  
Priyanka Kumar

We study the texture zeros of [Formula: see text] neutrino mass matrices [Formula: see text] in the minimal extended type-I seesaw (MES) mechanism, incorporating one extra gauge singlet field “[Formula: see text]”. The [Formula: see text]  MES model deals with [Formula: see text]  [Formula: see text], [Formula: see text]  [Formula: see text] and [Formula: see text] mass matrix [Formula: see text] which couples the right-handed neutrinos and the singlet field “[Formula: see text]”. We carry out the mapping of all possible zero textures of [Formula: see text], [Formula: see text] and [Formula: see text] with the restriction to phenomenologically predictive cases having total eight zeros of [Formula: see text] and [Formula: see text] studied in the literature. If [Formula: see text], the sterile neutrino mass, is subject to any limit, further block diagonalization of [Formula: see text] shall not be allowed to reduce it to a [Formula: see text] matrix. In [Formula: see text]  [Formula: see text] scenario, the study of texture zero is totally different and interesting. With this motivation, we consider the [Formula: see text] scheme where the digits of the pair represent the number of zeros of [Formula: see text] and [Formula: see text], respectively, along with the one/two-zero textures of [Formula: see text]. There are a large number of possibilities of zeros of fermion mass matrices, but the implementation of [Formula: see text] transformations reduces it to a very minimum number of basic structures. As the [Formula: see text] MES matrix is a matrix of rank 3, so we consider only those textures with two zeros which are of rank 3 whereby the number of feasible zero textures reduces to 12, out of 15. On realizing these 12 textures under MES mechanism with [Formula: see text] picture, we arrive at certain correlations for each texture. We examine the viability of each texture by scanning their respective correlations under recent neutrino oscillation data. Also, we discuss the interplay of Dirac and Majorana CP phases in determining the viability of a texture. The allowed two-zero textures are finally realized using a discrete Abelian flavor symmetry group [Formula: see text] with the extension of Standard Model to include some scalar fields.


2011 ◽  
Vol 26 (18) ◽  
pp. 2973-2995 ◽  
Author(s):  
MANMOHAN GUPTA ◽  
GULSHEEN AHUJA

Texture specific fermion mass matrices have played an important role in understanding several features of fermion masses and mixings. In the present work, we have given an overview of all possible cases of Fritzsch-like as well as non-Fritzsch-like texture 6 and 5 zero fermion mass matrices. Further, for the case of texture 4 zero Fritzsch-like quark mass matrices, the issue of the hierarchy of the elements of the mass matrices and the role of their phases have been discussed. Furthermore, the case of texture 4 zero Fritzsch-like lepton mass matrices has also been discussed with an emphasis on the hierarchy of neutrino masses for both Majorana and Dirac neutrinos.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Leon M. G. de la Vega ◽  
Newton Nath ◽  
Stefan Nellen ◽  
Eduardo Peinado

AbstractWe propose UV-completions of Froggatt–Nielsen–Peccei–Quinn models of fermion masses and mixings with flavored axions, by incorporating heavy fields. Here, the U(1) Froggatt–Nielsen symmetry is identified with the Peccei–Quinn symmetry to solve the strong CP problem along with the mass hierarchies of the Standard Model fermions. We take into account leading order contributions to the fermion mass matrices giving rise to Nearest-Neighbour-Interaction structure in the quark sector and $$A_2$$ A 2 texture in the neutrino sector. A comprehensive numerical analysis has been performed for the fermion mass matrices. Subsequently, we investigate the resulting axion flavor violating couplings and the axion-photon coupling arising from the model.


Sign in / Sign up

Export Citation Format

Share Document