scholarly journals Search for $$Z'$$ pair production from scalar boson decay in minimal $$U(1)_{L_\mu - L_\tau }$$ model at the LHC

2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Takaaki Nomura ◽  
Takashi Shimomura

AbstractWe consider a model with gauged $$L_\mu ^{} - L_\tau ^{}$$ L μ - L τ symmetry in which the symmetry is spontaneously broken by a scalar field. The decay of the scalar boson into two new gauge bosons is studied as a direct consequence of the spontaneous symmetry breaking. Then, a possibility of searches for the gauge and scalar bosons through such a decay at the LHC experiment is discussed. We consider the case that the mass range of the gauge boson is $${\mathcal {O}}(10)$$ O ( 10 )  GeV, which is motivated by anomalies reported by LHCb. We will show that the signal significance of the searches for the gauge boson and scalar boson reach to 3 and 5 for the scalar mixing 0.012 and 0.015, respectively.

2006 ◽  
Vol 161 ◽  
pp. 223-229 ◽  
Author(s):  
J.P. Vary ◽  
D. Chakrabarti ◽  
A. Harindranath ◽  
R. Lloyd ◽  
L. Martinovic ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Ufuk Aydemir ◽  
Tanumoy Mandal

We investigate the possibility of TeV-scale scalars as low energy remnants arising in the nonsupersymmetric SO(10) grand unification framework where the field content is minimal. We consider a scenario where the SO(10) gauge symmetry is broken into the gauge symmetry of the Standard Model (SM) through multiple stages of symmetry breaking, and a colored and hypercharged scalar χ picks a TeV-scale mass in the process. The last stage of the symmetry breaking occurs at the TeV-scale where the left-right symmetry, that is, SU(2)L⊗SU(2)R⊗U(1)B-L⊗SU(3)C, is broken into that of the SM by a singlet scalar field S of mass MS~1 TeV, which is a component of an SU(2)R-triplet scalar field, acquiring a TeV-scale vacuum expectation value. For the LHC phenomenology, we consider a scenario where S is produced via gluon-gluon fusion through loop interactions with χ and also decays to a pair of SM gauge bosons through χ in the loop. We find that the parameter space is heavily constrained from the latest LHC data. We use a multivariate analysis to estimate the LHC discovery reach of S into the diphoton channel.


2005 ◽  
Vol 20 (15) ◽  
pp. 3481-3487 ◽  
Author(s):  
VLADIMIR DZHUNUSHALIEV ◽  
DOUGLAS SINGLETON ◽  
DANNY DHOKARH

In the present work we show that it is possible to arrive at a Ginzburg-Landau (GL) like equation from pure SU (2) gauge theory. This has a connection to the dual superconducting model for color confinement where color flux tubes permanently bind quarks into color neutral states. The GL Lagrangian with a spontaneous symmetry breaking potential, has such (Nielsen-Olesen) flux tube solutions. The spontaneous symmetry breaking requires a tachyonic mass for the effective scalar field. Such a tachyonic mass term is obtained from the condensation of ghost fields.


1998 ◽  
Vol 13 (15) ◽  
pp. 1223-1233 ◽  
Author(s):  
PREM P. SRIVASTAVA

The light-front (LF) quantization of the bosonized Schwinger model is discussed. The proposal, successfully used earlier for describing the spontaneous symmetry breaking (SSB) on the LF, of separating first the scalar field into the dynamical condensate and the fluctuation fields before employing the standard Dirac method works here as well. The condensate variable is now shown to be a q-number operator in contrast to the case of SSB where it was shown to be a c-number. The condensate or θ-vacua emerge straightforwardly along with their continuum normalization which avoids the violation of the cluster decomposition property. Attention is drawn to the fact that the theory quantized, say, at equal x+, carries in it at the same time information on equal x- commutators as well.


2021 ◽  
Vol 2021 (12) ◽  
pp. 047
Author(s):  
Felipe F. Freitas ◽  
Carlos A.R. Herdeiro ◽  
António P. Morais ◽  
António Onofre ◽  
Roman Pasechnik ◽  
...  

Abstract We construct families, and concrete examples, of simple extensions of the Standard Model that can yield ultralight real or complex vectors or scalars with potential astrophysical relevance. Specifically, the mass range for these putative fundamental bosons (∼ 10-10-10-20 eV) would lead dynamically to both new non-black hole compact objects (bosonic stars) and new non-Kerr black holes, with masses of ∼ M⊙ to ∼ 1010 M⊙, corresponding to the mass range of astrophysical black hole candidates (from stellar mass to supermassive). For each model, we study the properties of the mass spectrum and interactions after spontaneous symmetry breaking, discuss its theoretical viability and caveats, as well as some of its potential and most relevant phenomenological implications linking them to the physics of compact objects.


2001 ◽  
Vol 16 (17) ◽  
pp. 1117-1127 ◽  
Author(s):  
M. A. CLAYTON

We demonstrate how nonlocal regularization is applied to gauge-invariant models with spontaneous symmetry breaking. Motivated by the ability to find a nonlocal BRST invariance that leads to the decoupling of longitudinal gauge bosons from physical amplitudes, we show that the original formulation of the method leads to a nontrivial relationship between the nonlocal form factors that can appear in the model.


1996 ◽  
Vol 11 (03) ◽  
pp. 247-255
Author(s):  
M.V. RAMANA

We calculate the production rate of gauge-boson pairs at e+e− colliders in a model with a “hidden” electroweak symmetry breaking sector, i.e. one in which there is a large number of particles in the symmetry breaking sector other than the W± and Z0. We show that the background exceeds the two gauge-boson fusion signals of electroweak symmetry breaking. This implies that in order to explore this model we must be prepared to observe final states other than gauge-bosons.


2014 ◽  
Vol 29 (32) ◽  
pp. 1450196
Author(s):  
Amir H. Fariborz ◽  
Renata Jora ◽  
Joseph Schechter

Starting from the equations of motion of the fields in a theory with spontaneous symmetry breaking and by making some simple assumptions regarding their behavior we derive simple tree level relations between the mass of the Higgs boson in the theory and the masses of the gauge bosons corresponding to the broken generators. We show that these mass relations have a clear meaning if both the scalars and the gauge bosons in the theory are composite states made of two fermions.


2010 ◽  
Vol 25 (18n19) ◽  
pp. 3641-3660
Author(s):  
SERGEY MIRONOV ◽  
MIKHAIL OSIPOV ◽  
SABIR RAMAZANOV

We discuss five-dimensional Standard Model in a slice of AdS space–time with the Higgs field residing near or on the UV brane. Allowing fermion fields to propagate in the bulk, we obtain the hierarchy of their masses and quark mixings without introducing large or small Yukawa couplings. However, the interaction of fermions with the Higgs and gauge boson KK excitations gives rise to FCNC with no built-in suppression mechanism. This strongly constrains the scale of KK masses. We also discuss neutrino mass generation via KK excitations of the Higgs field. We find that this mechanism is subdominant in the scenarios of spontaneous symmetry breaking we consider.


Sign in / Sign up

Export Citation Format

Share Document