scholarly journals Testing leptoquark/EFT in $${\bar{B}} \rightarrow {D^{(*)}}l{\bar{\nu }}$$ at the LHC

2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Syuhei Iguro ◽  
Michihisa Takeuchi ◽  
Ryoutaro Watanabe

AbstractWe investigate the current LHC bounds on New Physics (NP) that contributes to $${\bar{B}} \rightarrow {D^{(*)}}l{\bar{\nu }}$$ B ¯ → D ( ∗ ) l ν ¯ for $$l = (e,\mu ,\tau )$$ l = ( e , μ , τ ) by considering both leptoquark (LQ) models and an effective-field-theory (EFT) Hamiltonian. Experimental analyses from $$l+\text {missing}$$ l + missing searches with high $$p_T$$ p T are applied to evaluate the NP constraints with respect to the Wilson coefficients. A novel point of this work is to show difference between LQs and EFT for the applicable LHC bound. In particular, we find that the EFT description is not valid to search for LQs with the mass less than $$\lesssim 10\,\text {TeV}$$ ≲ 10 TeV at the LHC and leads to overestimated bounds. We also discuss future prospects of high luminosity LHC searches including the charge asymmetry of background and signal events. Finally, a combined summary for the flavor and LHC bounds is given, and then we see that in several NP scenarios the LHC constraints are comparable with the flavor ones.

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Rebeca Beltrán ◽  
Giovanna Cottin ◽  
Juan Carlos Helo ◽  
Martin Hirsch ◽  
Arsenii Titov ◽  
...  

Abstract Interest in searches for heavy neutral leptons (HNLs) at the LHC has increased considerably in the past few years. In the minimal scenario, HNLs are produced and decay via their mixing with active neutrinos in the Standard Model (SM) spectrum. However, many SM extensions with HNLs have been discussed in the literature, which sometimes change expectations for LHC sensitivities drastically. In the NRSMEFT, one extends the SM effective field theory with operators including SM singlet fermions, which allows to study HNL phenomenology in a “model independent” way. In this paper, we study the sensitivity of ATLAS to HNLs in the NRSMEFT for four-fermion operators with a single HNL. These operators might dominate both production and decay of HNLs, and we find that new physics scales in excess of 20 TeV could be probed at the high-luminosity LHC.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Lucien Heurtier ◽  
Hao-Lin Li ◽  
Huayang Song ◽  
Shufang Su ◽  
Wei Su ◽  
...  

AbstractThe Higgs sector in neutral naturalness models provides a portal to the hidden sectors, and thus measurements of Higgs couplings at current and future colliders play a central role in constraining the parameter space of the model. We investigate a class of neutral naturalness models, in which the Higgs boson is a pseudo-Goldstone boson from the universal SO(N)/SO(N −1) coset structure. Integrating out the radial mode from the spontaneous global symmetry breaking, we obtain various dimension-six operators in the Standard Model effective field theory, and calculate the low energy Higgs effective potential with radiative corrections included. We perform aχ2fit to the Higgs coupling precision measurements at current and future colliders and show that the new physics scale could be explored up to 2.3 (2.4) TeV without (with) the Higgs invisible decay channels at future Higgs factories. The limits are comparable to the indirect constraints obtained via electroweak precision measurements.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Marieke Postma ◽  
Graham White

Abstract To obtain a first order phase transition requires large new physics corrections to the Standard Model (SM) Higgs potential. This implies that the scale of new physics is relatively low, raising the question whether an effective field theory (EFT) description can be used to analyse the phase transition in a (nearly) model-independent way. We show analytically and numerically that first order phase transitions in perturbative extensions of the SM cannot be described by the SM-EFT. The exception are Higgs-singlet extension with tree-level matching; but even in this case the SM-EFT can only capture part of the full parameter space, and if truncated at dim-6 operators, the description is at most qualitative. We also comment on the applicability of EFT techniques to dark sector phase transitions.


Author(s):  
Subhaditya Bhattacharya ◽  
José Wudka

Standard Model (SM) of particle physics has achieved enormous success in describing the interactions among the known fundamental constituents of nature, yet it fails to describe phenomena for which there is very strong experimental evidence, such as the existence of dark matter, and which point to the existence of new physics not included in that model; beyond its existence, experimental data, however, have not provided clear indications as to the nature of that new physics. The effective field theory (EFT) approach, the subject of this review, is designed for this type of situations; it provides a consistent and unbiased framework within which to study new physics effects whose existence is expected but whose detailed nature is known very imperfectly. We will provide a description of this approach together with a discussion of some of its basic theoretical aspects. We then consider applications to high-energy phenomenology and conclude with a discussion of the application of EFT techniques to the study of dark matter physics and its possible interactions with the SM. In several of the applications we also briefly discuss specific models that are ultraviolet complete and may realize the effects described by the EFT.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Tong Li ◽  
Xiao-Dong Ma ◽  
Michael A. Schmidt

Abstract In this work we investigate the implication of low-energy precision measurements on the quark-lepton charged currents in general neutrino interactions with sterile neutrinos in effective field theories. The physics in low-energy measurements is described by the low-energy effective field theory extended with sterile neutrinos (LNEFT) defined below the electroweak scale. We also take into account renormalization group running and match the LNEFT onto the Standard Model (SM) effective field theory with sterile neutrinos (SMNEFT) to constrain new physics (NP) above the electroweak scale. The most sensitive low-energy probes are from leptonic decays of pseudoscalar mesons and hadronic tau lepton decays in terms of precise decay branching fractions, the lepton flavor universality and the Cabibbo-Kobayashi-Maskawa (CKM) unitarity. We also consider other constraints including nuclear beta decay. The constraints on charged current operators are generally stronger than the ones for quark-neutrino neutral current operators. We find that the most stringent bounds on the NP scale of lepton-number-conserving and lepton- number-violating operators in SMNEFT are 74 (110) TeV and 9.8 (13) TeV, respectively, for the operators with down (strange) quark.


2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Jacob J. Ethier ◽  
Raquel Gomez-Ambrosio ◽  
Giacomo Magni ◽  
Juan Rojo

AbstractWe present a systematic interpretation of vector boson scattering (VBS) and diboson measurements from the LHC in the framework of the dimension-six standard model effective field theory (SMEFT). We consider all available measurements of VBS fiducial cross-sections and differential distributions from ATLAS and CMS, in most cases based on the full Run II luminosity, and use them to constrain 16 independent directions in the dimension-six EFT parameter space. Compared to the diboson measurements, we find that VBS provides complementary information on several of the operators relevant for the description of the electroweak sector. We also quantify the ultimate EFT reach of VBS measurements via dedicated projections for the high luminosity LHC. Our results motivate the integration of VBS processes in future global SMEFT interpretations of particle physics data.


2018 ◽  
Vol 2018 (8) ◽  
Author(s):  
Stefan Alte ◽  
Matthias König ◽  
Matthias Neubert

2016 ◽  
Vol 31 (33) ◽  
pp. 1644006 ◽  
Author(s):  
Stefan Antusch ◽  
Oliver Fischer

The nonunitarity of the leptonic mixing matrix is a generic signal of new physics aiming at the generation of the observed neutrino masses. We discuss the Minimal Unitarity Violation (MUV) scheme, an effective field theory framework which represents the class of extensions of the Standard Model (SM) by heavy neutral leptons, and discuss the present bounds on the nonunitarity parameters as well as estimates for the sensitivity of the CEPC, based on the performance parameters from the preCDR.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Stefan Alte ◽  
Matthias König ◽  
Matthias Neubert

The two linear relations between operators shown in eq. (3.29) were missing an integral over the momentum fraction u on the right-hand side. In the one-particle anomalous dimensions in eq. (5.7) two fractions were mistyped.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
S. Davidson

Abstract Lepton Flavour Violation (LFV) is New Physics that must occur, but is stringently constrained by experiments searching for μ ↔ e flavour change, such as μ → eγ, μ →$$ e\overline{e}e $$ e e ¯ e or μ → e conversion. However, in an Effective Field Theory(EFT) parametrisation, there are many more μ ↔ e operators than restrictive constraints, so determining operator coefficients from data is a remote dream. It is nonetheless interesting to learn about New Physics from data, so this manuscript introduces “observable-vectors” in the space of operator coefficients, which identify at any scale the combination of coefficients probed by the observable. These vectors have an overlap ≳ 10−3 with most of the coefficients, and are used to study whether μ → eγ, μ →$$ e\overline{e}e $$ e e ¯ e and μ → e conversion give complementary information about New Physics. The appendix gives updated sensitivities of these processes, (and a subset of τ → ℓ decays), to operator coefficients at the weak scale in the SMEFT and in the EFT below mW.


Sign in / Sign up

Export Citation Format

Share Document