scholarly journals Study of energy response and resolution of the ATLAS Tile Calorimeter to hadrons of energies from 16 to 30 GeV

2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Jalal Abdallah ◽  
Stylianos Angelidakis ◽  
Giorgi Arabidze ◽  
Nikolay Atanov ◽  
Johannes Bernhard ◽  
...  

AbstractThree spare modules of the ATLAS Tile Calorimeter were exposed to test beams from the Super Proton Synchrotron accelerator at CERN in 2017. The detector’s measurements of the energy response and resolution to positive pions and kaons, and protons with energies ranging from 16 to 30 GeV are reported. The results have uncertainties of a few percent. They were compared to the predictions of the Geant4-based simulation program used in ATLAS to estimate the response of the detector to proton-proton events at the Large Hadron Collider. The determinations obtained using experimental and simulated data agree within the uncertainties.

2007 ◽  
Vol 25 (4) ◽  
pp. 639-647 ◽  
Author(s):  
N.A. Tahir ◽  
R. Schmidt ◽  
M. Brugger ◽  
I.V. Lomonosov ◽  
A. Shutov ◽  
...  

AbstractThe Super Proton Synchrotron (SPS) will serve as an injector to the Large Hadron Collider (LHC) at CERN as well as it is used to accelerate and extract proton beams for fixed target experiments. In either case, safety of operation is a very important issue that needs to be carefully addressed. This paper presents detailed numerical simulations of the thermodynamic and hydrodynamic response of solid targets made of copper and tungsten that experience impact of a full SPS beam comprized of 288 bunches of 450 GeV/c protons. These simulations have shown that the material will be seriously damaged if such an accident happens. An interesting outcome of this work is that the SPS can be used to carry out dedicated experiments to study High Energy Density (HED) states in matter.


2015 ◽  
Vol 30 (34) ◽  
pp. 1530061 ◽  
Author(s):  
Douglas M. Gingrich

The possibility of producing nonperturbative low-scale gravity states in collider experiments was first discussed in about 1998. The ATLAS and CMS experiments have searched for nonperturbative low-scale gravity states using the Large Hadron Collider with a proton–proton center-of-mass energy of 8 TeV. These experiments have now seriously confronted the possibility of producing nonperturbative low-scale gravity states which were proposed over 17 years ago. I will summarize the results of the searches, give a personal view of what they mean, and make some predictions for 13 TeV center-of-mass energy. I will also discuss early ATLAS 13 TeV center-of-mass energy results.


2015 ◽  
Vol 48 (4) ◽  
pp. 977-989 ◽  
Author(s):  
Riccardo Camattari ◽  
Vincenzo Guidi ◽  
Valerio Bellucci ◽  
Andrea Mazzolari

`Quasi-mosaicity' is an effect of anisotropy in crystals that permits one to obtain a curvature of internal crystallographic planes that would be flat otherwise. The term `quasi-mosaicity' was introduced by O. Sumbaev in 1957. The concept of `quasi-mosaicity' was then retrieved about ten years ago and was applied to steering of charged-particle beams at the Super Proton Synchrotron at CERN. Beams were deviated by exploiting channeling and volume reflection phenomena in curved crystals that show the `quasi-mosaic' effect. More recently, a crystal of this kind was installed in the Large Hadron Collider at CERN for beam collimation by the UA9 collaboration. Since 2011, another important application involving the `quasi-mosaic' effect has been the focalization of hard X-rays and soft γ-rays. In particular, the possibility of obtaining both high diffraction efficiency and the focalization of a diffracted beam has been proved, which cannot be obtained using traditional diffracting crystals. A comprehensive survey of the physical properties of `quasi-mosaicity' is reported here. Finally, experimental demonstrations for adjustable values of the `quasi-mosaic' curvature are provided.


Sign in / Sign up

Export Citation Format

Share Document