scholarly journals Determination of the up/down-quark mass within QCD sum rules in the scalar channel

2021 ◽  
Vol 81 (9) ◽  
Author(s):  
Fang-Hui Yin ◽  
Wen-Ya Tian ◽  
Liang Tang ◽  
Zhi-Hui Guo

AbstractIn this work, we determine up/down-quark mass $$m_{q=u/d}$$ m q = u / d in the isoscalar scalar channel from both the Shifman–Vainshtein–Zakharov (SVZ) and the Monte-Carlo-based QCD sum rules. The relevant spectral function, including the contributions from the $$f_0(500)$$ f 0 ( 500 ) , $$f_0(980)$$ f 0 ( 980 ) and $$f_0(1370)$$ f 0 ( 1370 ) resonances, is determined from a sophisticated U(3) chiral study. Via the traditional SVZ QCD sum rules, we give the prediction to the average light-quark mass $$m_q(2 ~\text {GeV})=\frac{1}{2}(m_u(2 ~\text {GeV}) + m_d(2 ~\text {GeV}))=(3.46^{+0.16}_{-0.22} \pm 0.33) ~\text {MeV}$$ m q ( 2 GeV ) = 1 2 ( m u ( 2 GeV ) + m d ( 2 GeV ) ) = ( 3 . 46 - 0.22 + 0.16 ± 0.33 ) MeV . Meanwhile, by considering the uncertainties of the input QCD parameters and the spectral functions of the isoscalar scalar channel, we obtain $$m_q (2~\text {GeV}) = (3.44 \pm 0.14 \pm 0.32) ~\text {MeV}$$ m q ( 2 GeV ) = ( 3.44 ± 0.14 ± 0.32 ) MeV from the Monte-Carlo-based QCD sum rules. Both results are perfectly consistent with each other, and nicely agree with the Particle Data Group value within the uncertainties.

2013 ◽  
Vol 28 (25) ◽  
pp. 1360015 ◽  
Author(s):  
PETER MINKOWSKI

The basis of the material discussed is our work in collaboration with Arnulfo Zepeda from 1979 [Nucl. Phys. B164, 25 (1980)]. The ingredients and consequences of this work will be presented, and compared with results obtained from QCD sum rules and lattice simulations of QCD in accordance with chiral expansions. An up-to-date conclusion will not be possible in this paper, but some comments towards such goal will be given in a concluding section.


2017 ◽  
Vol 96 (1) ◽  
Author(s):  
Jia-Min Yuan ◽  
Zhu-Feng Zhang ◽  
T. G. Steele ◽  
Hong-Ying Jin ◽  
Zhuo-Ran Huang

2018 ◽  
Vol 175 ◽  
pp. 13008 ◽  
Author(s):  
Yuzhi Liu ◽  
Jon A. Bailey ◽  
A. Bazavov ◽  
C. Bernard ◽  
C. M. Bouchard ◽  
...  

Using the MILC 2+1 flavor asqtad quark action ensembles, we are calculating the form factors f0 and f+ for the semileptonic Bs → Kℓv decay. A total of six ensembles with lattice spacing from ≈ 0.12 to 0.06 fm are being used. At the coarsest and finest lattice spacings, the light quark mass m’l is one-tenth the strange quark mass m’s. At the intermediate lattice spacing, the ratio m’l/m’s ranges from 0.05 to 0.2. The valence b quark is treated using the Sheikholeslami-Wohlert Wilson-clover action with the Fermilab interpretation. The other valence quarks use the asqtad action. When combined with (future) measurements from the LHCb and Belle II experiments, these calculations will provide an alternate determination of the CKM matrix element |Vub|.


2010 ◽  
Vol 25 (29) ◽  
pp. 5223-5234 ◽  
Author(s):  
C. A. DOMINGUEZ

The standard procedure to determine (analytically) the values of the quark masses is to relate QCD two-point functions to experimental data in the framework of QCD sum rules. In the case of the light quark sector, the ideal Green function is the pseudoscalar correlator which involves the quark masses as an overall multiplicative factor. For the past thirty years this method has been affected by systematic uncertainties originating in the hadronic resonance sector, thus limiting the accuracy of the results. Recently, a major breakthrough has been made allowing for a considerable reduction of these systematic uncertainties and leading to light quark masses accurate to better than 8%. This procedure will be described in this talk for the up-, down-, strange-quark masses, after a general introduction to the method of QCD sum rules.


2013 ◽  
Vol 28 (26) ◽  
pp. 1360016 ◽  
Author(s):  
KARL SCHILCHER

Recent QCD sum rule determinations of the light quark masses are reviewed. In the case of the strange quark mass, possible uncertainties are discussed in the framework of finite energy sum rules.


1995 ◽  
Vol 10 (19) ◽  
pp. 2865-2880 ◽  
Author(s):  
M.B. VOLOSHIN

The QCD sum rules for moments of the production cross section of [Formula: see text] states in e+ e− annihilation are extremely sensitive to the values of mb and αs for moments of large order n. This enables one to extract from the existing data on ϒ resonances the values of these parameters with a high precision by using a nonrelativistic expansion in 1/n. It is found that the sum rules fit the data with [Formula: see text] and mb=4827±7 MeV, where the estimate of the errors includes the theoretical uncertainty due to subleading-in-1/n terms and the experimental uncertainty of the e+ e− annihilation cross section above the [Formula: see text] threshold. The found value of αs, when evolved in two loops up to the Z mass, gives [Formula: see text]. The b quark mass mb corresponds to the “on-shell” value appropriate for one-loop perturbative calculations.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Luke Gayer ◽  
Nicolas Lang ◽  
Sinéad M. Ryan ◽  
David Tims ◽  
Christopher E. Thomas ◽  
...  

Abstract Isospin-1/2 Dπ scattering amplitudes are computed using lattice QCD, working in a single volume of approximately (3.6 fm)3 and with a light quark mass corresponding to mπ ≈ 239 MeV. The spectrum of the elastic Dπ energy region is computed yielding 20 energy levels. Using the Lüscher finite-volume quantisation condition, these energies are translated into constraints on the infinite-volume scattering amplitudes and hence enable us to map out the energy dependence of elastic Dπ scattering. By analytically continuing a range of scattering amplitudes, a $$ {D}_0^{\ast } $$ D 0 ∗ resonance pole is consistently found strongly coupled to the S-wave Dπ channel, with a mass m ≈ 2200 MeV and a width Γ ≈ 400 MeV. Combined with earlier work investigating the $$ {D}_{s0}^{\ast } $$ D s 0 ∗ , and $$ {D}_0^{\ast } $$ D 0 ∗ with heavier light quarks, similar couplings between each of these scalar states and their relevant meson-meson scattering channels are determined. The mass of the $$ {D}_0^{\ast } $$ D 0 ∗ is consistently found well below that of the $$ {D}_{s0}^{\ast } $$ D s 0 ∗ , in contrast to the currently reported experimental result.


2017 ◽  
Vol 2017 ◽  
pp. 1-24 ◽  
Author(s):  
Alejandro Ayala ◽  
C. A. Dominguez ◽  
M. Loewe

The method of QCD sum rules at finite temperature is reviewed, with emphasis on recent results. These include predictions for the survival of charmonium and bottonium states, at and beyond the critical temperature for deconfinement, as later confirmed by lattice QCD simulations. Also included are determinations in the light-quark vector and axial-vector channels, allowing analysing the Weinberg sum rules and predicting the dimuon spectrum in heavy-ion collisions in the region of the rho-meson. Also, in this sector, the determination of the temperature behaviour of the up-down quark mass, together with the pion decay constant, will be described. Finally, an extension of the QCD sum rule method to incorporate finite baryon chemical potential is reviewed.


2009 ◽  
Vol 79 (1) ◽  
Author(s):  
C. A. Dominguez ◽  
N. F. Nasrallah ◽  
R. H. Röntsch ◽  
K. Schilcher

Sign in / Sign up

Export Citation Format

Share Document