scholarly journals Aspects of thin film deposition on granulates by physical vapor deposition

2016 ◽  
Vol 70 (11) ◽  
Author(s):  
Andreas Eder ◽  
Gerwin H.S. Schmid ◽  
Harald Mahr ◽  
Christoph Eisenmenger-Sittner
Author(s):  
Fredrick M. Mwema ◽  
Esther T. Akinlabi ◽  
Oluseyi Philip Oladijo

In this chapter, the current state of the art in optimization of thin film deposition processes is discussed. Based on the reliable and credible published results, the study aims to identify the applications of various optimization techniques in the thin film deposition processes, with emphasis on physical deposition methods. These methods are chosen due to their attractive attributes over chemical deposition techniques for thin film manufacturing. The study identifies the critical parameters and factors, which are significant in designing of the optimization algorithms based on the specific deposition methods. Based on the specific optimization studies, the chapter provides general trends, optimization evaluation criteria, and input-output parameter relationships on thin film deposition. Research gaps and directions for future studies on optimization of physical vapor deposition methods for thin film manufacturing are provided.


2004 ◽  
Vol 459 (1-2) ◽  
pp. 160-164 ◽  
Author(s):  
Aleksander Werbowy ◽  
Andrzej Olszyna ◽  
Krzysztof Zdunek ◽  
Aleksandra Sokołowska ◽  
Jan Szmidt ◽  
...  

Author(s):  
James E. Maslar ◽  
William A. Kimes ◽  
Brent A. Sperling

Thin film vapor deposition processes, e.g., chemical vapor deposition, are widely used in high-volume manufacturing of electronic and optoelectronic devices. Ensuring desired film properties and maximizing process yields require control of the chemical precursor flux to the deposition surface. However, achieving the desired control can be difficult due to numerous factors, including delivery system design, ampoule configuration, and precursor properties. This report describes an apparatus designed to investigate such factors. The apparatus simulates a single precursor delivery line, e.g., in a chemical vapor deposition tool, with flow control, pressure monitoring, and a precursor-containing ampoule. It also incorporates an optical flow cell downstream of the ampoule to permit optical measurements of precursor density in the gas stream. From such measurements, the precursor flow rate can be determined, and, for selected conditions, the precursor partial pressure in the headspace can be estimated. These capabilities permit this apparatus to be used for investigating a variety of factors that affect delivery processes. The methods of determining the pressure to (1) calculate the precursor flow rate and (2) estimate the headspace pressure are discussed, as are some of the errors associated with these methods. While this apparatus can be used under a variety of conditions and configurations relevant to deposition processes, the emphasis here is on low-volatility precursors that are delivered at total pressures less than about 13 kPa downstream of the ampoule. An important goal of this work is to provide data that could facilitate both deposition process optimization and ampoule design refinement.


Sign in / Sign up

Export Citation Format

Share Document