scholarly journals Constraints on the spatial variation of Planck constant

2021 ◽  
Vol 136 (8) ◽  
Author(s):  
Emilio Fiordilino

AbstractInspired by recently published researches, we present two protocols for setting an upper limit to the claimed variation of $$\hbar $$ ħ upon the position. The protocols, both within today state of art, involve the use of two delayed laser pulses driving an atom. The distinct positions of the laboratory, due to the Earth motion, affects $$\hbar $$ ħ and hence the atomic dynamics. The first protocol measures the difference in population of the atomic ground state while the second one the red-shift of the harmonics emitted by the atom in the two moments of the experiment. The protocols improve the reported upper limit of $$\varDelta \hbar /\hbar $$ Δ ħ / ħ . The theory shows that $$\hbar (\varvec{r})$$ ħ ( r ) induces a chaotic evolution to the atom. This form of Chaos is generated by a variation of a physical parameter and is one example of Parametric Chaos.

The exact masses of the nuclei are quantity of great interest depending directly on the forces of cohesion between the nuclear particles. Already much valuable information has been obtained about the lighter element both by mass-spectrographic methods and by the study of atomic dis-integrations. The discovery of the new radioactive elements has extended greatly the number of nuclei open to investigation, but since nearly all of these disintegrate by emitting either positrons or electrons forming a continuous spectrum we meet here the same difficulty in determining the total energy change in the disintegration as with the natural β-ray bodies. In this latter case Henderson* has proved the correcting of the suggestion of Ellis and Mott that the difference of energy of two nuclei, apart from γ-emission, is given by the upper limit of the β-ray spectrum. However, as was emphasized by Cockroft at the British Association Meeting at Norwich, in September, 1935, this is a point which needs verification in the region of low atomic number and particularly for positron disintegration. We have attempted to obtain some information on this point by investigating the disintegration of radio-phosphorus [P30] formed from aluminium by α-particle bombardment, The disintegration of radio phosphorus has already been investigated several times, but there is such a notable disagreement between the values given by different observers for the energy of the upper limit that we felt fresh experiments were needed, further, it is necessary to determine whether the upper limit corresponds to the formation of the ground state or of an excited state of the product nucleus.


1962 ◽  
Vol 14 ◽  
pp. 149-155 ◽  
Author(s):  
E. L. Ruskol

The difference between average densities of the Moon and Earth was interpreted in the preceding report by Professor H. Urey as indicating a difference in their chemical composition. Therefore, Urey assumes the Moon's formation to have taken place far away from the Earth, under conditions differing substantially from the conditions of Earth's formation. In such a case, the Earth should have captured the Moon. As is admitted by Professor Urey himself, such a capture is a very improbable event. In addition, an assumption that the “lunar” dimensions were representative of protoplanetary bodies in the entire solar system encounters great difficulties.


1857 ◽  
Vol 8 ◽  
pp. 111-116 ◽  

The Trigonometrical Survey of the United Kingdom commenced in the year 1784, under the immediate auspices of the Royal Society; the first base was traced by General Roy on the 16th of April of that year, on Hounslow Heath, in presence of Sir Joseph Banks, then President of the Society, and some of its most distinguished Fellows. The principal object which the Government had then in view, was the connexion of the Observatories of Paris and Greenwich by means of a triangulation, for the purpose of determining the difference of longitude between the two observatories.


1973 ◽  
Vol 263 (4) ◽  
pp. 341-346 ◽  
Author(s):  
S. Büttgenbach ◽  
M. Herschel ◽  
G. Meisel ◽  
E. Schrödl ◽  
W. Witte ◽  
...  

1994 ◽  
Vol 340 ◽  
Author(s):  
Bing-Lin Gu ◽  
Jing-Zhi Yu ◽  
Xiao Hu ◽  
Kaoru Ohno ◽  
Yoshiyuki Kawazoe

ABSTRACTA concentration wave method for several interpenetrating Bravais sublattices is presented by considering the intralayer and interlayer effective interactions and the difference between the surface layers and the deeper layers in III – V alloys. The ground state ordered structures of ternary III – V semiconductor alloys are deduced and a dynamic model is established.


2021 ◽  
Author(s):  
Jean-Philippe Montillet ◽  
Wolfgang Finsterle ◽  
Werner Schmutz ◽  
Margit Haberreiter ◽  
Rok Sikonja

<p><span>Since the late 70’s, successive satellite missions have been monitoring the sun’s activity, recording total solar irradiance observations. These measurements are important to estimate the Earth’s energy imbalance, </span><span>i.e. the difference of energy absorbed and emitted by our planet. Climate modelers need the solar forcing time series in their models in order to study the influence of the Sun on the Earth’s climate. With this amount of TSI data, solar irradiance reconstruction models  can be better validated which can also improve studies looking at past climate reconstructions (e.g., Maunder minimum). V</span><span>arious algorithms have been proposed in the last decade to merge the various TSI measurements over the 40 years of recording period. We have developed a new statistical algorithm based on data fusion.  The stochastic noise processes of the measurements are modeled via a dual kernel including white and coloured noise.  We show our first results and compare it with previous releases (PMOD,ACRIM, ... ). </span></p>


Author(s):  
S. Tiguntsev

In classical physics, time is considered absolute. It is believed that all processes, regardless of their complexity, do not affect the flow of time The theory of relativity determines that the flow of time for bodies depends both on the speed of movement of bodies and on the magnitude of the gravitational potential. It is believed that time in space orbit passes slower due to the high speed of the spacecraft, and faster due to the lower gravitational potential than on the surface of the Earth. Currently, the dependence of time on the magnitude of the gravitational potential and velocity (relativistic effect) is taken into account in global positioning systems. However, studying the relativistic effect, scientists have made a wrong interpretation of the difference between the clock frequency of an orbiting satellite and the clock frequency on the Earth's surface. All further studies to explain the relativistic effect were carried out according to a similar scenario, that is, only the difference in clock frequencies under conditions of different gravitational potentials was investigated. While conducting theoretical research, I found that the frequency of the signal changes along the way from the satellite to the receiver due to the influence of Earth's gravity. It was found that the readings of two high-precision clocks located at different heights will not differ after any period of time, that is, it is shown that the flow of time does not depend on the gravitational potential. It is proposed to conduct full-scale experiments, during which some high-precision clocks are sent aboard the space station, while others remain in the laboratory on the surface of the earth. It is expected that the readings of the satellite clock will be absolutely identical to the readings of the clock in the Earth laboratory.


1962 ◽  
Vol 52 (3) ◽  
pp. 469-484 ◽  
Author(s):  
Tatsuo Usami ◽  
Yasuo Satô

abstract There are several causes for the observations of splitting of the spectral peaks determined from the free oscillation of the earth. In this paper, the splitting due to the ellipticity is studied assuming a homogeneous earth described by oblate spheroidal coordinates. Ellipticity causes the iTn mode to split into (n + 1) modes, while the earth's rotation causes it to split into (2n + 1) modes. 1/297.0 is adopted as the ellipticity of the earth. Numerical calculations are carried out for the fundamental mode (n = 2, 3, 4) and for the first higher harmonics (n = 1). The difference between the extreme frequencies for each value of n is 0.7% (n = 2), 0.5% (n = 3), and 0.4% (n = 4).


Sign in / Sign up

Export Citation Format

Share Document