scholarly journals A mechanistic model for airborne and direct human-to-human transmission of COVID-19: effect of mitigation strategies and immigration of infectious persons

Author(s):  
Saheb Pal ◽  
Indrajit Ghosh
2021 ◽  
Author(s):  
Carlo Cristiano ◽  
◽  
Marco Pirrone ◽  

Risk-mitigation strategies are most effective when the major sources of uncertainty are determined through dedicated and in-depth studies. In the context of reservoir characterization and modeling, petrophysical uncertainty plays a significant role in the risk assessment phase, for instance in the computation of volumetrics. The conventional workflow for the propagation of the petrophysical uncertainty consists of physics-based model embedded into a Monte Carlo (MC) template. In detail, open-hole logs and their inherent uncertainties are used to estimate the important petrophysical properties (e.g. shale volume, porosity, water saturation) with uncertainty through the mechanistic model and MC simulations. In turn, model parameter uncertainties can be also considered. This standard approach can be highly time-consuming in case the physics-based model is complex, unknown, difficult to reproduce (e.g. old/legacy wells) and/or the number of wells to be processed is very high. In this respect, the aim of this paper is to show how a data-driven methodology can be used to propagate the petrophysical uncertainty in a fast and efficient way, speeding-up the complete process but still remaining consistent with the main outcomes. In detail, a fit-for-purpose Random Forest (RF) algorithm learns through experience how log measurements are related to the important petrophysical parameters. Then, a MC framework is used to infer the petrophysical uncertainty starting from the uncertainty of the input logs, still with the RF model as a driver. The complete methodology, first validated with ad-hoc synthetic case studies, has been then applied to two real cases, where the petrophysical uncertainty has been required for reservoir modeling purposes. The first one includes legacy wells intercepting a very complex lithological environment. The second case comprises a sandstone reservoir with a very high number of wells, instead. For both scenarios, the standard approach would have taken too long (several months) to be completed, with no possibility to integrate the results into the reservoir models in time. Hence, for each well the RF regressor has been trained and tested on the whole dataset available, obtaining a valid data-driven analytics model for formation evaluation. Next, 1000 scenarios of input logs have been generated via MC simulations using multivariate normal distributions. Finally, the RF regressor predicts the associated 1000 petrophysical characterization scenarios. As final outcomes of the workflow, ad-hoc statistics (e.g. P10, P50, P90 quantiles) have been used to wrap up the main findings. The complete data-driven approach took few days for both scenarios with a critical impact on the subsequent reservoir modeling activities. This study opens the possibility to quickly process a high number of wells and, in particular, it can be also used to effectively propagate the petrophysical uncertainty to legacy well data for which conventional approaches are not an option, in terms of time-efficiency.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Dylan H Morris ◽  
Kwe Claude Yinda ◽  
Amandine Gamble ◽  
Fernando W Rossine ◽  
Qishen Huang ◽  
...  

Ambient temperature and humidity strongly affect inactivation rates of enveloped viruses, but a mechanistic, quantitative theory of these effects has been elusive. We measure the stability of SARS-CoV-2 on an inert surface at nine temperature and humidity conditions and develop a mechanistic model to explain and predict how temperature and humidity alter virus inactivation. We find SARS-CoV-2 survives longest at low temperatures and extreme relative humidities (RH); median estimated virus half-life is >24 hours at 10C and 40% RH, but ~1.5 hours at 27C and 65% RH. Our mechanistic model uses fundamental chemistry to explain why inactivation rate increases with increased temperature and shows a U-shaped dependence on RH. The model accurately predicts existing measurements of five different human coronaviruses, suggesting that shared mechanisms may affect stability for many viruses. The results indicate scenarios of high transmission risk, point to mitigation strategies, and advance the mechanistic study of virus transmission.


2021 ◽  
Author(s):  
Peipei Wu ◽  
Ruochong Xu ◽  
Xuantong Wang ◽  
Amina Schartup ◽  
Arjen Luijendijk ◽  
...  

Mismanaged plastics accumulate in oceans and threaten marine life. About 40 million tonnes of plastics have reached the oceans, where their fate remains unclear. To track the sources, sinks, sizes, and age of all-time released plastics, we developed a new mechanistic model and synthesized decades of measurements. We find that Asian plastics are the largest contributor (76%) to marine plastics by mass but only affect the North Pacific and the Indian Ocean, whereas plastics from fishing and shipping activities contribute 24% by mass but cover 60% of the ocean surface. Using the model, we demonstrate that biologically productive nearshore (63%) or upper ocean (25%) ecosystems trap 88% of the marine plastic. This study provides a model framework to assess the potential effect of future mitigation strategies.


Author(s):  
Dylan H. Morris ◽  
Kwe Claude Yinda ◽  
Amandine Gamble ◽  
Fernando W. Rossine ◽  
Qishen Huang ◽  
...  

AbstractEnvironmental conditions affect virus inactivation rate and transmission potential. Understanding those effects is critical for anticipating and mitigating epidemic spread. Ambient temperature and humidity strongly affect the inactivation rate of enveloped viruses, but a mechanistic, quantitative theory of those effects has been elusive. We measure the stability of the enveloped respiratory virus SARS-CoV-2 on an inert surface at nine temperature and humidity conditions and develop a mechanistic model to explain and predict how temperature and humidity alter virus inactivation. We find SARS-CoV-2 survives longest at low temperatures and extreme relative humidities; median estimated virus half-life is over 24 hours at 10 °C and 40 % RH, but approximately 1.5 hours at 27 °C and 65 % RH. Our mechanistic model uses simple chemistry to explain the increase in virus inactivation rate with increased temperature and the U-shaped dependence of inactivation rate on relative humidity. The model accurately predicts quantitative measurements from existing studies of five different human coronaviruses (including SARS-CoV-2), suggesting that shared mechanisms may determine environmental stability for many enveloped viruses. Our results indicate scenarios of particular transmission risk, point to pandemic mitigation strategies, and open new frontiers in the mechanistic study of virus transmission.


2019 ◽  
Author(s):  
Yujie Tu ◽  
Junkai Liu ◽  
Haoke Zhang ◽  
Qian Peng ◽  
Jacky W. Y. Lam ◽  
...  

Aggregation-induced emission (AIE) is an unusual photophysical phenomenon and provides an effective and advantageous strategy for the design of highly emissive materials in versatile applications such as sensing, imaging, and theragnosis. "Restriction of intramolecular motion" is the well-recognized working mechanism of AIE and have guided the molecular design of most AIE materials. However, it sometimes fails to be workable to some heteroatom-containing systems. Herein, in this work, we take more than one excited state into account and specify a mechanism –"restriction of access to dark state (RADS)" – to explain the AIE effect of heteroatom-containing molecules. An anthracene-based zinc ion probe named APA is chosen as the model compound, whose weak fluorescence in solution is ascribed to the easy access from the bright (π,π*) state to the closelying dark (n,π*) state caused by the strong vibronic coupling of the two excited states. By either metal complexation or aggregation, the dark state is less accessible due to the restriction of the molecular motion leading to the dark state and elevation of the dark state energy, thus the emission of the bright state is restored. RADS is found to be powerful in elucidating the photophysics of AIE materials with excited states which favor non-radiative decay, including overlap-forbidden states such as (n,π*) and CT states, spin-forbidden triplet states, which commonly exist in heteroatom-containing molecules.


Sign in / Sign up

Export Citation Format

Share Document