Different types of Lagrangian coherent structures formed by solid particles in three-dimensional time-periodic flows

2017 ◽  
Vol 226 (6) ◽  
pp. 1239-1251 ◽  
Author(s):  
Denis E. Melnikov ◽  
Valentina Shevtsova
2010 ◽  
Vol 654 ◽  
pp. 1-4 ◽  
Author(s):  
STEPHEN WIGGINS

In the 1980s the incorporation of ideas from dynamical systems theory into theoretical fluid mechanics, reinforced by elegant experiments, fundamentally changed the way in which we view and analyse Lagrangian transport. The majority of work along these lines was restricted to two-dimensional flows and the generalization of the dynamical systems point of view to fully three-dimensional flows has seen less progress. This situation may now change with the work of Pouransari et al. (J. Fluid Mech., this issue, vol. 654, 2010, pp. 5–34) who study transport in a three-dimensional time-periodic flow and show that completely new types of dynamical systems structures and consequently, coherent structures, form a geometrical template governing transport.


2012 ◽  
Vol 12 (12) ◽  
pp. 5483-5507 ◽  
Author(s):  
B. Rutherford ◽  
G. Dangelmayr ◽  
M. T. Montgomery

Abstract. Recent work has suggested that tropical cyclones intensify via a pathway of rotating deep moist convection in the presence of enhanced fluxes of moisture from the ocean. The rotating deep convective structures possessing enhanced cyclonic vorticity within their cores have been dubbed Vortical Hot Towers (VHTs). In general, the interaction between VHTs and the system-scale vortex, as well as the corresponding evolution of equivalent potential temperature (θe) that modulates the VHT activity, is a complex problem in moist helical turbulence. To better understand the structural aspects of the three-dimensional intensification process, a Lagrangian perspective is explored that focuses on the coherent structures seen in the flow field associated with VHTs and their vortical remnants, as well as the evolution and localized stirring of θe. Recently developed finite-time Lagrangian methods are limited in the three-dimensional turbulence and shear associated with the VHTs. In this paper, new Lagrangian techniques developed for three-dimensional velocity fields are summarized and we apply these techniques to study VHT and θe phenomenology in a high-resolution numerical tropical cyclone simulation. The usefulness of these methods is demonstrated by an analysis of particle trajectories. We find that VHTs create a locally turbulent mixing environment. However, associated with the VHTs are hyperbolic structures that span between adjacent VHTs or adjacent vortical remnants and represent coherent finite-time transport barriers in the flow field. Although the azimuthally-averaged inflow is responsible for the inward advection of boundary layer θe, attracting Lagrangian coherent structures are coincident with pools of high boundary layer θe. Extensions of boundary layer coherent structures grow above the boundary layer during episodes of convection and remain with the convective vortices. These hyperbolic structures form initially as boundaries between VHTs. As vorticity aggregates into a ring-like eyewall feature, the Lagrangian boundaries merge into a ring outside of the region of maximal vorticity.


2013 ◽  
Vol 258 ◽  
pp. 77-92 ◽  
Author(s):  
Mohamed H.M. Sulman ◽  
Helga S. Huntley ◽  
B.L. Lipphardt ◽  
A.D. Kirwan

2007 ◽  
Vol 572 ◽  
pp. 111-120 ◽  
Author(s):  
M. A. GREEN ◽  
C. W. ROWLEY ◽  
G. HALLER

We use direct Lyapunov exponents (DLE) to identify Lagrangian coherent structures in two different three-dimensional flows, including a single isolated hairpin vortex, and a fully developed turbulent flow. These results are compared with commonly used Eulerian criteria for coherent vortices. We find that despite additional computational cost, the DLE method has several advantages over Eulerian methods, including greater detail and the ability to define structure boundaries without relying on a preselected threshold. As a further advantage, the DLE method requires no velocity derivatives, which are often too noisy to be useful in the study of a turbulent flow. We study the evolution of a single hairpin vortex into a packet of similar structures, and show that the birth of a secondary vortex corresponds to a loss of hyperbolicity of the Lagrangian coherent structures.


2010 ◽  
Vol 67 (7) ◽  
pp. 2307-2319 ◽  
Author(s):  
Wenbo Tang ◽  
Manikandan Mathur ◽  
George Haller ◽  
Douglas C. Hahn ◽  
Frank H. Ruggiero

Abstract Direct Lyapunov exponents and stability results are used to extract and distinguish Lagrangian coherent structures (LCS) from a three-dimensional atmospheric dataset generated from the Weather Research and Forecasting (WRF) model. The numerical model is centered at 19.78°N, 155.55°W, initialized from the Global Forecast System for the case of a subtropical jet stream near Hawaii on 12 December 2002. The LCS are identified that appear to create optical and mechanical turbulence, as evidenced by balloon data collected during a measurement campaign near Hawaii.


Author(s):  
Bashar Attiya ◽  
I-Han Liu ◽  
Muhannad Altimemy ◽  
Cosan Daskiran ◽  
Alparslan Oztekin

Large Eddy Simulations (LES) are performed to investigate the coherent structures in flows past a single and an array of tandem plates. Lagrangian coherent structures (LCS) are used to investigate the nonlinear vortex dynamics of flow past a single plate. The Finite-Time Lyapunov Exponent (FTLE) is calculated using the velocity data obtained from Large Eddy Simulations (LES). All simulations are conducted at Reynolds number of 50,000. LCS for a single plate is presented in this study to elucidate and comprehend highly turbulent flow interactions in these flows. The LCS is compared against most commonly used Eulerian structures which are contours of the vorticity and the Q-criterion. The FTLE fields reveal much clearer turbulent structures compared to the Eulerian structures. FTLE better describes the evolution of larger scale eddies. The Q-criterion of flows past an array of plates is also presented.


Sign in / Sign up

Export Citation Format

Share Document