The stability of three-dimensional time-periodic flows with spatially uniform strain rates

1992 ◽  
Vol 234 (-1) ◽  
pp. 613 ◽  
Author(s):  
A. D. D. Craik ◽  
H. R. Allen
1996 ◽  
Vol 324 ◽  
pp. 379-391 ◽  
Author(s):  
G. K. Forster ◽  
A. D. D. Craik

Most steady flows with constant vorticity and elliptical streamlines are known to be unstable. These, and certain axisymmetric time-periodic flows, can be analysed by Floquet theory. However, Floquet theory is inapplicable to other time-periodic flows that yield disturbance equations containing a quasi-periodic, rather than periodic, function. A practical method for surmounting this difficulty was recently given by Bayly, Holm & Lifschitz. Employing their method, we determine the stability of a clas of three-dimensional time-periodic flows: namely, those unbounded flows with fixed ellipsoidal stream surfaces and spatially uniform but time-periodic strain rates. Corresponding, but bounded, flows are those within a fixed ellipsoid with three different principal axes. This is perhaps the first exact stability analysis of non-reducibly three-dimensional and time-dependent flows. Though the model has some artificial features, the results are likely to shed light on more complex systems of practical interest.


1977 ◽  
Vol 82 (3) ◽  
pp. 497-505 ◽  
Author(s):  
W. H. Yang ◽  
Chia-Shun Yih

The stability of time-periodic flows in a circular pipe is investigated. The disturbance is assumed to be axially symmetric and to have a small amplitude, so that the governing differential equation is linear. Calculations are carried out for the first ten modes for a range of values of the frequency of the primary motion, of the wavenumber of the disturbance, and of the Reynolds number of the primary flow. In the ranges of the parameters for which the calculations have been carried out, the flows are found to be stable and, as for Stokes flows (von Kerczek & Davis 1974), it is conjectured that the flows under study here are stable for all frequencies and all Reynolds numbers.


2018 ◽  
Vol 857 ◽  
pp. 80-110 ◽  
Author(s):  
Sagar Patankar ◽  
Palas Kumar Farsoiya ◽  
Ratul Dasgupta

We perform linear stability analysis of an interface separating two immiscible, inviscid, quiescent fluids subject to a time-periodic body force. In a generalised, orthogonal coordinate system, the time-dependent amplitude of interfacial perturbations, in the form of standing waves, is shown to be governed by a generalised Mathieu equation. For zero forcing, the Mathieu equation reduces to a (generalised) simple harmonic oscillator equation. The generalised Mathieu equation is shown to govern Faraday waves on four time-periodic base states. We use this equation to demonstrate that Faraday waves and instabilities can arise on an axially unbounded, cylindrical capillary fluid filament subject to radial, time-periodic body force. The stability chart for solutions to the Mathieu equation is obtained through numerical Floquet analysis. For small values of perturbation and forcing amplitude, results obtained from direct numerical simulations (DNS) of the incompressible Euler equation (with surface tension) show very good agreement with theoretical predictions. Linear theory predicts that unstable Rayleigh–Plateau modes can be stabilised through forcing. This prediction is borne out by DNS results at early times. Nonlinearity produces higher wavenumbers, some of which can be linearly unstable due to forcing and thus eventually destabilise the filament. We study axisymmetric as well as three-dimensional perturbations through DNS. For large forcing amplitude, localised sheet-like structures emanate from the filament, suffering subsequent fragmentation and breakup. Systematic parametric studies are conducted in a non-dimensional space of five parameters and comparison with linear theory is provided in each case. Our generalised analysis provides a framework for understanding free and (parametrically) forced capillary oscillations on quiescent base states of varying geometrical configurations.


1991 ◽  
Vol 230 ◽  
pp. 647-665 ◽  
Author(s):  
D. G. Dritschel ◽  
P. H. Haynes ◽  
M. N. Juckes ◽  
T. G. Shepherd

The quantitative effects of uniform strain and background rotation on the stability of a strip of constant vorticity (a simple shear layer) are examined. The thickness of the strip decreases in time under the strain, so it is necessary to formulate the linear stability analysis for a time-dependent basic flow. The results show that even a strain rate γ (scaled with the vorticity of the strip) as small as 0.25 suppresses the conventional Rayleigh shear instability mechanism, in the sense that the r.m.s. wave steepness cannot amplify by more than a certain factor, and must eventually decay. For γ < 0.25 the amplification factor increases as γ decreases; however, it is only 3 when γ ė 0.065. Numerical simulations confirm the predictions of linear theory at small steepness and predict a threshold value necessary for the formation of coherent vortices. The results help to explain the impression from numerous simulations of two-dimensional turbulence reported in the literature that filaments of vorticity infrequently roll up into vortices. The stabilization effect may be expected to extend to two- and three-dimensional quasi-geostrophic flows.


Author(s):  
Abdelkrim Merah ◽  
Ridha Kelaiaia ◽  
Faiza Mokhtari

Abstract The Taylor-Couette flow between two rotating coaxial cylinders remains an ideal tool for understanding the mechanism of the transition from laminar to turbulent regime in rotating flow for the scientific community. We present for different Taylor numbers a set of three-dimensional numerical investigations of the stability and transition from Couette flow to Taylor vortex regime of a viscous incompressible fluid (liquid sodium) between two concentric cylinders with the inner one rotating and the outer one at rest. We seek the onset of the first instability and we compare the obtained results for different velocity rates. We calculate the corresponding Taylor number in order to show its effect on flow patterns and pressure field.


2012 ◽  
Vol 9 (1) ◽  
pp. 94-97
Author(s):  
Yu.A. Itkulova

In the present work creeping three-dimensional flows of a viscous liquid in a cylindrical tube and a channel of variable cross-section are studied. A qualitative triangulation of the surface of a cylindrical tube, a smoothed and experimental channel of a variable cross section is constructed. The problem is solved numerically using boundary element method in several modifications for a periodic and non-periodic flows. The obtained numerical results are compared with the analytical solution for the Poiseuille flow.


Sign in / Sign up

Export Citation Format

Share Document