Solutions with the Model Potential for the Potential Representation Method

2011 ◽  
Vol 16 (3) ◽  
pp. 442-450 ◽  
Author(s):  
Arvydas Juozapas Janavičius ◽  
Donatas Jurgaitis ◽  
Sigita Turskienė

A general solution of the Schrödinger equation in the potential representation has been obtained in the form of integral equations. In this representation, the wave function for positive and negative energies or bound states can be expressed as a product of the unperturbed solution for model potential and the function which depends on the additional potential or potential perturbation. Here we have proved that this method is equivalent to the method of variation of constants for negative energies. The linearly independent solutions of Schrödinger equation for harmonic oscillator potential have been obtained for derivation of integral equations, which are used for finding eigenfunctions and eigenvalues for Woods–Saxon potential. Eigenvalues obtained by numerical iterations of these integral equations are in good agreement with results obtained by the discretization method. The kernels of the obtained integral equations are proportional to the perturbation or difference of Woods–Saxon and harmonic oscillator potentials.


1974 ◽  
Vol 35 (C5) ◽  
pp. C5-7-C5-7
Author(s):  
J. P. JEUKENNE ◽  
A. LEJEUNE ◽  
C. MAHAUX

2008 ◽  
Vol 73 (11) ◽  
pp. 1509-1524 ◽  
Author(s):  
Ivana Paidarová ◽  
Roman Čurík ◽  
Stephan P. A. Sauer

We illustrate for a set of small hydrocarbons, CH4, C2H4, C3H6 and C3H8, the important role of the electric dipole polarizability tensor and its geometric derivatives in theoretical models of electron energy-loss spectra (EELS). The coupled cluster linear response method together with Sadlej's polarized valence triple zeta basis set of atomic orbitals were used to calculate the polarizabilities and polarizability gradients. Incorporation of these ab initio data into the discrete momentum representation method (DMR) leads to perfect agreement between theory and collision experiments.


Atoms ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 47
Author(s):  
Kathryn R. Hamilton ◽  
Klaus Bartschat ◽  
Oleg Zatsarinny

We have applied the full-relativistic Dirac B-Spline R-matrix method to obtain cross sections for electron scattering from ytterbium atoms. The results are compared with those obtained from a semi-relativistic (Breit-Pauli) model-potential approach and the few available experimental data.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mikhail V. Ryzhkov ◽  
Andrei N. Enyashin ◽  
Bernard Delley

Abstract Geometry optimization and the electronic structure calculations of Pu Z+ complexes (Z = 3–6) in water solution have been performed, within the framework of the DMol3 and Relativistic Discrete-Variational (RDV) methods. For the simulation of Pu Z+ molecular environment in aqueous solution we used 22 and 32 water molecules randomly distributed around cation. To model the effect of bulk solvent environment we used COSMO (Conductor-like Screening Model) potential for water (ε = 78.54). The obtained results showed that this approach allows the modeling of water dissociation and the formation of hydrolysis products. Our previously suggested scheme for the calculation of interaction energies between selected fragments of multi-molecular systems provides the quantitative estimation of the interaction strengths between plutonium in various oxidation states and each ligand in the first and second coordination shells in water solution.


2016 ◽  
Vol 157 (33) ◽  
pp. 1320-1325
Author(s):  
Emese Pálfi ◽  
Mária Ashaber ◽  
Cory Palmer ◽  
Robert M. Friedman ◽  
Anna W. Roe ◽  
...  

Introduction: The close functional relationship between areas 3b and 1 of the somatosensory cortex is based on their reciprocal connections indicating that tactile sensation depends on the interaction of these two areas. Aim: The aim of the authors was to explore this neuronal circuit at the level of the distal finger pad representation. Method: The study was made by bidirectional tract tracing aided by neurophysiological mapping in squirrel monkeys (Saimiri sciureus). Results: Inter-areal connections between the two areas preferred the homologues representations. However, intra-areal connections were formed between the neighboring finger pad representations supporting the physiological observations. Interestingly, the size of the local input area of the injected cortical micro-region, which differed in the two areas, represented the same skin area. Conclusions: The authors propose that intra-areal connections are important in integrating information across fingers, while inter-areal connections are important in maintaining input localization during hand movement. Orv. Hetil., 2016, 157(33), 1320–1325.


Sign in / Sign up

Export Citation Format

Share Document