ULTRA-HIGH ENERGY COSMIC RAYS: EXPERIMENTAL RESULTS AND OPEN QUESTIONS IN THE MULTI-MESSENGER ERA

Author(s):  
Antonella Castellina
2019 ◽  
Vol 209 ◽  
pp. 01018
Author(s):  
Roberto Aloisio

The physics of Ultra High Energy Cosmic Rays will be reviewed, discussing the latest experimental results and theoretical models aiming at explaining the observations in terms of spectra, mass composition and possible sources. It will be also discussed the emission of secondary particles such as neutrinos and gamma rays produced by the interaction of Ultra High Energy Cosmic Rays with astrophysical photon backgrounds. The content of the present proceeding paper is mainly based on the review papers [1, 2].


Author(s):  
Eli Waxman

The construction of large-volume detectors of high energy, greater than 1 TeV, neutrinos is mainly driven by the search for extragalactic neutrino sources. The existence of such sources is implied by the observations of ultra-high-energy, greater than or equal to 10 19  eV, cosmic rays, the origin of which is a mystery. In this lecture, I briefly discuss the expected extragalactic neutrino signal and the current state of the experimental efforts. Neutrino emission from gamma-ray bursts (GRBs), which are probably sources of both high-energy protons and neutrinos, is discussed in some detail. The detection of the predicted GRB neutrino signal, which may become possible in the coming few years, will allow one to identify the sources of ultra-high-energy cosmic rays and to resolve open questions related to the underlying physics of GRB models. Moreover, detection of GRB neutrinos will allow one to test for neutrino properties (e.g. flavour oscillations and coupling to gravity) with an accuracy many orders of magnitude better than is currently possible.


2006 ◽  
Vol 21 (08n09) ◽  
pp. 1950-1961 ◽  
Author(s):  
STEFAN WESTERHOFF

One of the most striking astrophysical phenomena today is the existence of cosmic ray particles with energies in excess of 1020 eV. While their presence has been confirmed by a number of experiments, it is not clear where and how these particles are accelerated to these energies and how they travel astronomical distances without substantial energy loss. We are entering an exciting new era in cosmic ray physics, with instruments now producing data of unprecedented quality and quantity to tackle the many open questions. This paper reviews the current experimental status of cosmic ray physics and summarizes recent results on the energy spectrum and arrival directions of ultra-high-energy cosmic rays.


2020 ◽  
Vol 29 (1) ◽  
pp. 40-46
Author(s):  
Dmitri L. Khokhlov

AbstractThe studied conjecture is that ultra high energy cosmic rays (UHECRs) are hypothetical Planck neutrinos arising in the decay of the protons falling onto the gravastar. The proton is assumed to decay at the Planck scale into positron and four Planck neutrinos. The supermassive black holes inside active galactic nuclei, while interpreted as gravastars, are considered as UHECR sources. The scattering of the Planck neutrinos by the proton at the Planck scale is considered. The Planck neutrinos contribution to the CR events may explain the CR spectrum from 5 × 1018 eV to 1020 eV. The muon number in the Planck neutrinos-initiated shower is estimated to be larger by a factor of 3/2 in comparison with the standard model that is consistent with the observational data.


2011 ◽  
Vol 20 (supp02) ◽  
pp. 50-56
Author(s):  
◽  
PETER SCHIFFER

The Pierre Auger Observatory is the world's largest experiment for the measurement of ultra-high energy cosmic rays (UHECRs). These UHECRs are assumed to be to be charged particles, and thus are deflected in cosmic magnetic fields. Recent results of the Pierre Auger Observatory addressing the complex of energy ordering of the UHECRs arrival directions are reviewed in this contribution. So far no significant energy ordering has been observed.


2019 ◽  
Vol 210 ◽  
pp. 02001
Author(s):  
Sergey Ostapchenko

The differences between contemporary Monte Carlo generators of high energy hadronic interactions are discussed and their impact on the interpretation of experimental data on ultra-high energy cosmic rays (UHECRs) is studied. Key directions for further model improvements are outlined. The prospect for a coherent interpretation of the data in terms of the UHECR composition is investigated.


2004 ◽  
Vol 136 ◽  
pp. 159-168 ◽  
Author(s):  
M. Ave ◽  
N. Busca ◽  
A.V. Olinto ◽  
A.A. Watson ◽  
T. Yamamoto

Sign in / Sign up

Export Citation Format

Share Document