scholarly journals THE FUTURE OF HIGH ENERGY NUCLEAR PHYSICS IN EUROPE

Author(s):  
JURGEN SCHUKRAFT
2018 ◽  
Vol 54 (50) ◽  
pp. 6648-6661 ◽  
Author(s):  
Linlin Li ◽  
Siyuan Li ◽  
Yingying Lu

We describe the challenges of high-energy lithium-metal batteries and outline the future directions that are expected to drive their progress.


1960 ◽  
Vol 11 (11) ◽  
pp. 310-310
Author(s):  
F Mandl
Keyword(s):  

Author(s):  
Jaewon Jung ◽  
Sungeun Jung ◽  
Junhyeong Lee ◽  
Myungjin Lee ◽  
Hung Soo Kim

The interest in renewable energy to replace fossil fuel is increasing as the problem caused by climate change become more severe. Small hydropower (SHP) is evaluated as a resource with high development value because of its high energy density compared to other renewable energy sources. SHP may be an attractive and sustainable power generation environmental perspective because of its potential to be found in small rivers and streams. The power generation potential could be estimated based on the discharge in the river basin. Since the river discharge depends on the climate conditions, the hydropower generation potential changes sensitively according to climate variability. Therefore, it is necessary to analyze the SHP potential in consideration of future climate change. In this study, the future prospect of SHP potential is simulated for the period of 2021 to 2100 considering the climate change in three hydropower plants of Deoksong, Hanseok, and Socheon stations, Korea. As the results, SHP potential for the near future (2021 to 2040) shows a tendency to be increased and the highest increase is 23.4% at the Deoksong SPH plant. Through the result of future prospect, we have shown that hydroelectric power generation capacity or SHP potential will be increased in the future. Therefore, we believe that it is necessary to revitalize the development of SHP in order to expand the use of renewable energy. Also, a methodology presented in this study could be used for the future prospect of the small hydropower potential.


2021 ◽  
Vol 5 (1) ◽  
pp. 1-5
Author(s):  
Editorial team

Eurasian Journal of Physics and Functional Materials is an international journal published 4 numbers per year starting from October 2017. The aim of the journal is rapid publication of original articles and rewiews in the following areas: nuclear physics, high energy physics, radiation ecology, alternative energy (nuclear and hydrogen, photovoltaic, new energy sources, energy efficiency and energy saving, the energy sector impact on the environment), functional materials and related problems of high technologies.


2021 ◽  
Author(s):  
◽  
Lukas Weih

High-energy astrophysics plays an increasingly important role in the understanding of our universe. On one hand, this is due to ground-breaking observations, like the gravitational-wave detections of the LIGO and Virgo network or the black-hole shadow observations of the EHT collaboration. On the other hand, the field of numerical relativity has reached a level of sophistication that allows for realistic simulations that include all four fundamental forces of nature. A prime example of how observations and theory complement each other can be seen in the studies following GW170817, the first detection of gravitational waves from a binary neutron-star merger. The same detection is also the chronological starting point of this Thesis. The plethora of information and constraints on nuclear physics derived from GW170817 in conjunction with theoretical computations will be presented in the first part of this Thesis. The second part goes beyond this detection and prepares for future observations when also the high-frequency postmerger signal will become detectable. Specifically, signatures of a quark-hadron phase transition are discussed and the specific case of a delayed phase transition is analyzed in detail. Finally, the third part of this Thesis focuses on the inclusion of radiative transport in numerical astrophysics. In the context of binary neutron-star mergers, radiation in the form of neutrinos is crucial for realistic long-term simulations. Two methods are introduced for treating radiation: the approximate state-of-the-art two-moment method (M1) and the recently developed radiative Lattice-Boltzmann method. The latter promises to be more accurate than M1 at a comparable computational cost. Given that most methods for radiative transport or either inaccurate or unfeasible, the derivation of this new method represents a novel and possibly paradigm-changing contribution to an accurate inclusion of radiation in numerical astrophysics.


2003 ◽  
Vol 592 (1) ◽  
pp. 311-320 ◽  
Author(s):  
Hiroyuki Yoshiguchi ◽  
Shigehiro Nagataki ◽  
Katsuhiko Sato

Nature ◽  
1963 ◽  
Vol 197 (4874) ◽  
pp. 1236-1236
Author(s):  
W. WALKINSHAW
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document