USING MONODOMAIN COMPUTER MODELS FOR THE SIMULATION OF ELECTRIC FIELDS DURING EXCITATION SPREAD IN CARDIAC TISSUE

2006 ◽  
pp. 225-278
Author(s):  
G. PLANK
2021 ◽  
pp. 62-72
Author(s):  
E.V. Karpovich

The article considers computer modeling of mechanical, heat and power systems, and electronics and automation systems for the modern educational process organized remotely in the period of the COVID-19 coronavirus pandemic. The article describes the computer models created by the author, analyzes and highlights the positive aspects of such modeling for conducting distance learning experiments, visual and detailed presentation of theoretical material, and creating conditions for obtaining high-quality education even in the difficult conditions of the pandemic. This paper describes only an extremely small number of computer training models developed by the author for distance learning on educational platforms. It is worth mentioning that for various disciplines, the author of the article created computer models for the following sections: magnetic and electric fields, magnetic hysteresis, electromagnetic induction, addition of vibrations, waves, wave optics, magneto-optical effects, electronics, semiconductors, atomic physics. The interfaces of virtual models are intuitive; many objects are supplemented with «pop-up» comments and are designed so that students, even those who are not good at computer technology, can work with them independently without assistance. Therefore, these programmed manuals are of particular importance for distance learning on educational platforms. Models in computer lab work clearly demonstrate real experiments and accurately reflect physical patterns. The ranges of the measured parameters make it possible to record a sufficient number of experimental values. All the listed advantages of these models allow them to be actively used for distance learning on educational platforms without reducing the quality of the education received by students in comparison with conventional training.


EP Europace ◽  
2005 ◽  
Vol 7 (s2) ◽  
pp. S166-S177 ◽  
Author(s):  
N. H. L. Kuijpers ◽  
R. H. Keldermann ◽  
T. Arts ◽  
P. A. J. Hilbers

Abstract Aim The aim of the present study is to investigate the origin and effect of virtual electrode polarization in uniform, decoupled and non-uniform cardiac tissue during field stimulation. Methods A discrete bidomain model with active membrane behaviour was used to simulate normal cardiac tissue as well as cardiac tissue that is decoupled due to fibrosis and gap junction remodelling. Various uniform and non-uniform electric fields were applied to the external domain of uniform, decoupled and non-uniform resting cardiac tissue as well as cardiac tissue in which spiral waves were induced. Results Field stimulation applied on non-uniform tissue results in more virtual electrodes compared with uniform tissue. The spiral waves were terminated in decoupled tissue, but not in uniform, homogeneous tissue. By gradually increasing local differences in intracellular conductivities, the amount and spread of virtual electrodes increased and the spiral waves were terminated. Conclusion Fast depolarization of the tissue after field stimulation may be explained by intracellular decoupling and spatial heterogeneity present in normal and pathological cardiac tissue. We demonstrated that termination of spiral waves by means of field stimulation can be achieved when the tissue is modelled as a non-uniform, anisotropic bidomain with active membrane behaviour.


Author(s):  
R. R. Dils ◽  
P. S. Follansbee

Electric fields have been applied across oxides growing on a high temperature alloy and control of the oxidation of the material has been demonstrated. At present, three-fold increases in the oxidation rate have been measured in accelerating fields and the oxidation process has been completely stopped in a retarding field.The experiments have been conducted with an iron-base alloy, Pe 25Cr 5A1 0.1Y, although, in principle, any alloy capable of forming an adherent aluminum oxide layer during oxidation can be used. A specimen is polished and oxidized to produce a thin, uniform insulating layer on one surface. Three platinum electrodes are sputtered on the oxide surface and the specimen is reoxidized.


Author(s):  
Teruo Someya ◽  
Jinzo Kobayashi

Recent progress in the electron-mirror microscopy (EMM), e.g., an improvement of its resolving power together with an increase of the magnification makes it useful for investigating the ferroelectric domain physics. English has recently observed the domain texture in the surface layer of BaTiO3. The present authors ) have developed a theory by which one can evaluate small one-dimensional electric fields and/or topographic step heights in the crystal surfaces from their EMM pictures. This theory was applied to a quantitative study of the surface pattern of BaTiO3).


Author(s):  
John Silcox

Several aspects of magnetic and electric effects in electron microscope images are of interest and will be discussed here. Clearly electrons are deflected by magnetic and electric fields and can give rise to image detail. We will review situations in ferromagnetic films in which magnetic image effects are the predominant ones, others in which the magnetic effects give rise to rather subtle changes in diffraction contrast, cases of contrast at specimen edges due to leakage fields in both ferromagnets and superconductors and some effects due to electric fields in insulators.


Author(s):  
Robert H. Liss ◽  
Frances A. Cotton

Daunomycin, an antibiotic used in the clinical management of acute leukemia, produces a delayed, lethal cardiac toxicity. The lethality is dose and schedule dependent; histopathologic changes induced by the drug have been described in heart, lung, and kidney from hamsters in both single and multiple dose studies. Mice given a single intravenous dose of daunomycin (10 mg/kg) die 6-7 days later. Drug distribution studies indicate that the rodents excrete most of a single dose of the drug as daunomycin and metabolite within 48 hours after dosage (M. A. Asbell, personal communication).Myocardium from the ventricles of 6 moribund BDF1 mice which had received a single intravenous dose of daunomycin (10 mg/kg), and from controls dosed with physiologic saline, was fixed in glutaraldehyde and prepared for electron microscopy.


Author(s):  
M. Ashraf ◽  
F. Thompson ◽  
S. Miki ◽  
P. Srivastava

Iron is believed to play an important role in the pathogenesis of ischemic injury. However, the sources of intracellular iron in myocytes are not yet defined. In this study we have attempted to localize iron at various cellular sites of the cardiac tissue with the ferrocyanide technique.Rat hearts were excised under ether anesthesia. They were fixed with coronary perfusion with 3% buffered glutaraldehyde made in 0.1 M cacodylate buffer pH 7.3. Sections, 60 μm in thickness, were cut on a vibratome and were incubated in the medium containing 500 mg of potassium ferrocyanide in 49.5 ml H2O and 0.5 ml concentrated HC1 for 30 minutes at room temperature. Following rinses in the buffer, tissues were dehydrated in ethanol and embedded in Spurr medium.The examination of thin sections revealed intense staining or reaction product in peroxisomes (Fig. 1).


Author(s):  
V. Kaushik ◽  
P. Maniar ◽  
J. Olowolafe ◽  
R. Jones ◽  
A. Campbell ◽  
...  

Lead zirconium titanate films (Pb (Zr,Ti) O3 or PZT) are being considered for potential application as dielectric films in memory technology due to their high dielectric constants. PZT is a ferroelectric material which shows spontaneous polarizability, reversible under applied electric fields. We report herein some results of TEM studies on thin film capacitor structures containing PZT films with platinum-titanium electrodes.The wafers had a stacked structure consisting of PZT/Pt/Ti/SiO2/Si substrate as shown in Figure 1. Platinum acts as electrode material and titanium is used to overcome the problem of platinum adhesion to the oxide layer. The PZT (0/20/80) films were deposited using a sol-gel method and the structure was annealed at 650°C and 800°C for 30 min in an oxygen ambient. XTEM imaging was done at 200KV with the electron beam parallel to <110> zone axis of silicon.Figure 2 shows the PZT and Pt layers only, since the structure had a tendency to peel off at the Ti-Pt interface during TEM sample preparation.


Sign in / Sign up

Export Citation Format

Share Document