X-RAY STANDING WAVES IN THIN CRYSTALS: PROBING THE POLARITY OF THIN EPITAXIAL FILMS

Author(s):  
ALEXANDER KAZIMIROV ◽  
JÖRG ZEGENHAGEN ◽  
TIEN-LIN LEE ◽  
MICHAEL BEDZYK
Keyword(s):  
1986 ◽  
Vol 149 (05) ◽  
pp. 69-103 ◽  
Author(s):  
M.V. Koval'chuk ◽  
V.G. Kohn
Keyword(s):  

2020 ◽  
Vol 4 (2) ◽  
Author(s):  
Jens Niederhausen ◽  
Antoni Franco-Cañellas ◽  
Simon Erker ◽  
Thorsten Schultz ◽  
Katharina Broch ◽  
...  
Keyword(s):  

2003 ◽  
Vol 42 (Part 1, No. 11) ◽  
pp. 7050-7052 ◽  
Author(s):  
Shinichiro Nakatani ◽  
Kazushi Sumitani ◽  
Akinobu Nojima ◽  
Toshio Takahashi ◽  
Keiichi Hirano ◽  
...  

2007 ◽  
Vol 90 (19) ◽  
pp. 193122 ◽  
Author(s):  
Chengqing Wang ◽  
Ronald L. Jones ◽  
Eric K. Lin ◽  
Wen-Li Wu ◽  
Jim Leu

2000 ◽  
Vol 623 ◽  
Author(s):  
R. Kalare ◽  
M. Vedawyas ◽  
A. Kumar

AbstractAn electrode plays an important role in realising a ferroelectric thin film as a potential memory device. We have investigated LaNiO3 (LNO) as a potential electrode material and evaluated the ferroelectric properties of oxide materials like strontium bismuth tantalate (SBT) and barium titanate(BT). We have successfully deposited epitaxial films of LNO on Pt coated Si(100) and LaAlO3 (LAO) substrates using the pulsed excimer laser deposition technique. We are able to grow high quality SBT and BT films on top of this LNO layer. The X-ray diffraction revealed the epitaxy of the LNO, SBT and BT films. The ferroelectric properties of SBTand BT were investigated using the RT66A ferroelectric tester.


1999 ◽  
Vol 60 (23) ◽  
pp. 15546-15549 ◽  
Author(s):  
Osami Sakata ◽  
Nobuyuki Matsuki ◽  
Hiroo Hashizume
Keyword(s):  

1989 ◽  
Vol 160 ◽  
Author(s):  
G. Bai ◽  
M-A. Nicolet ◽  
S.-J. Kim ◽  
R.G. Sobers ◽  
J.W. Lee ◽  
...  

AbstractSingle layers of ~ 0.5µm thick InuGa1-uAs1-vPv (0.52 < u < 0.63 and 0.03 < v < 0.16) were grown epitaxially on InP(100) substrates by liquid phase epitaxy at ~ 630°C. The compositions of the films were chosen to yield a constant banndgap of ~ 0.8 eV (λ = 1.55 µm) at room temperature. The lattice mismatch at room temperature between the epitaxial film and the substrate varies from - 4 × 10-3 to + 4 × 10-3. The strain in the films was characterized in air by x-ray double crystal diffractometry with a controllable heating stage from 23°C to ~ 700°C. All the samples have an almost coherent interfaces from 23°C to about ~ 330°C with the lattice mismatch accomodated mainly by the tetragonal distortion of the epitaxial films. In this temperature range, the x-ray strain in the growth direction increases linearly with temperature at a rate of (2.0 ± 0.4) × 10-6/°C and the strain state of the films is reversible. Once the samples are heated above ~ 300°C, a significant irreversible deterioration of the epitaxial films sets in.


2015 ◽  
Vol 30 (12) ◽  
pp. 2548-2550
Author(s):  
W. Jark ◽  
D. Eichert

The data interpretation in the recently published paper with the above title is criticized and it is shown that an alternative more physical model based on diffraction in periodic structures can explain the data better and more consistently.


Sign in / Sign up

Export Citation Format

Share Document