A non-linear theory of mesons, nucleons and hyperons is proposed. The three independent fields of the usual symmetrical pseudo-scalar pion field are replaced by the three directions of a four-component field vector of constant length, conceived in an Euclidean four-dimensional isotopic spin space. This length provides the universal scaling factor, all other constants being dimensionless; the mass of the meson field is generated by a ϕ 4 term; this destroys the continuous rotation group in the iso-space, leaving a ‘cubic’ symmetry group. Classification of states by this group introduces quantum numbers corresponding to isotopic spin and to ‘strangeness’; one consequence is that, at least in elementary interactions, charge is only conserved modulo 4. Furthermore, particle states have not a well-defined parity, but parity is effectively conserved for meson-nucleon interactions. A simplified model, using only two dimensions of space and iso-space, is considered further; the non-linear meson field has solutions with particle character, and an indication is given of the way in which the particle field variables might be introduced as collective co-ordinates describing the dynamics of these particular solutions of the meson field equations, suggesting a unified theory based on the meson field alone.


1967 ◽  
Vol 29 (2) ◽  
pp. 317-336 ◽  
Author(s):  
Bruce E. Larock ◽  
Robert L. Street

An analysis is made of the effect of a transverse gravity field on a two-dimensional fully cavitating flow past a flat-plate hydrofoil. Under the assumption that the flow is both irrotational and incompressible, a non-linear method is developed by using conformal mapping and the solution to a mixed-boundary-value problem in an auxiliary half plane. A new cavity model, proposed by Tulin (1964a), is employed. The solution to the gravity-affected case was found by iteration; the non-gravity solution was used as the initial trial of a rapidly convergent process. The theory indicates that the lift and cavity size are reduced by the gravity field. Typical results are presented and compared to Parkin's (1957) linear theory.


1965 ◽  
Vol AS-3 (2) ◽  
pp. 32-38 ◽  
Author(s):  
S. V. Ahamed ◽  
E. A. Erdelyi ◽  
R. E. Hopkins

2019 ◽  
Vol 485 (3) ◽  
pp. 3991-3998 ◽  
Author(s):  
Darryl Seligman ◽  
Philip F Hopkins ◽  
Jonathan Squire

Abstract We investigate, for the first time, the non-linear evolution of the magnetized ‘resonant drag instabilities’ (RDIs). We explore magnetohydrodynamic simulations of gas mixed with (uniform) dust grains subject to Lorentz and drag forces, using the gizmo code. The magnetized RDIs exhibit fundamentally different behaviour than purely acoustic RDIs. The dust organizes into coherent structures and the system exhibits strong dust–gas separation. In the linear and early non-linear regime, the growth rates agree with linear theory and the dust self-organizes into 2D planes or ‘sheets.’ Eventually the gas develops fully non-linear, saturated Alfvénic, and compressible fast-mode turbulence, which fills the underdense regions with a small amount of dust, and drives a dynamo that saturates at equipartition of kinetic and magnetic energy. The dust density fluctuations exhibit significant non-Gaussianity, and the power spectrum is strongly weighted towards the largest (box scale) modes. The saturation level can be understood via quasi-linear theory, as the forcing and energy input via the instabilities become comparable to saturated tension forces and dissipation in turbulence. The magnetized simulation presented here is just one case; it is likely that the magnetic RDIs can take many forms in different parts of parameter space.


Sign in / Sign up

Export Citation Format

Share Document