Cost Management in Supply Chains from a Life Cycle Perspective

Author(s):  
Johanna Kleinekorte ◽  
Lorenz Fleitmann ◽  
Marvin Bachmann ◽  
Arne Kätelhön ◽  
Ana Barbosa-Póvoa ◽  
...  

Design in the chemical industry increasingly aims not only at economic but also at environmental targets. Environmental targets are usually best quantified using the standardized, holistic method of life cycle assessment (LCA). The resulting life cycle perspective poses a major challenge to chemical engineering design because the design scope is expanded to include process, product, and supply chain. Here, we first provide a brief tutorial highlighting key elements of LCA. Methods to fill data gaps in LCA are discussed, as capturing the full life cycle is data intensive. On this basis, we review recent methods for integrating LCA into the design of chemical processes, products, and supply chains. Whereas adding LCA as a posteriori tool for decision support can be regarded as established, the integration of LCA into the design process is an active field of research. We present recent advances and derive future challenges for LCA-based design.


Author(s):  
Cheila Almeida ◽  
Philippe Loubet ◽  
Tamíris Pacheco da Costa ◽  
Paula Quinteiro ◽  
Jara Laso ◽  
...  

2021 ◽  
Vol 13 (9) ◽  
pp. 4948
Author(s):  
Núria Boix Rodríguez ◽  
Giovanni Formentini ◽  
Claudio Favi ◽  
Marco Marconi

Face masks are currently considered key equipment to protect people against the COVID-19 pandemic. The demand for such devices is considerable, as is the amount of plastic waste generated after their use (approximately 1.6 million tons/day since the outbreak). Even if the sanitary emergency must have the maximum priority, environmental concerns require investigation to find possible mitigation solutions. The aim of this work is to develop an eco-design actions guide that supports the design of dedicated masks, in a manner to reduce the negative impacts of these devices on the environment during the pandemic period. Toward this aim, an environmental assessment based on life cycle assessment and circularity assessment (material circularity indicator) of different types of masks have been carried out on (i) a 3D-printed mask with changeable filters, (ii) a surgical mask, (iii) an FFP2 mask with valve, (iv) an FFP2 mask without valve, and (v) a washable mask. Results highlight how reusable masks (i.e., 3D-printed masks and washable masks) are the most sustainable from a life cycle perspective, drastically reducing the environmental impacts in all categories. The outcomes of the analysis provide a framework to derive a set of eco-design guidelines which have been used to design a new device that couples protection requirements against the virus and environmental sustainability.


Author(s):  
Jean‐Baptiste E. Thomas ◽  
Rajib Sinha ◽  
Åsa Strand ◽  
Tore Söderqvist ◽  
Johanna Stadmark ◽  
...  

2021 ◽  
Vol 13 (3) ◽  
pp. 1036
Author(s):  
Siri Willskytt

Consumable products have received less attention in the circular economy (CE), particularly in regard to the design of resource-efficient products. This literature review investigates the extent to which existing design guidelines for resource-efficient products are applicable to consumables. This analysis is divided into two parts. The first investigates the extent to which general product-design guidelines (i.e., applicable to both durables and consumables) are applicable to consumables. This analysis also scrutinizes the type of recommendations presented by the ecodesign and circular product design, to investigate the novel aspects of the CE in product design. The second analysis examines the type of design considerations the literature on product-type specific design guidelines recommends for specific consumables and whether such guidelines are transferable. The analysis of general guidelines showed that, although guidelines are intended to be general and applicable to many types of products, their applicability to consumable products is limited. Less than half of their recommendations can be applied to consumables. The analysis also identified several design considerations that are transferable between product-specific design guidelines. This paper shows the importance of the life-cycle perspective in product design, to maximize the opportunities to improve consumables.


2020 ◽  
pp. 125087
Author(s):  
Engin Karal ◽  
Mehmet Ali Kucuker ◽  
Burak Demirel ◽  
Nadim K. Copty ◽  
Kerstin Kuchta

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6236
Author(s):  
Michael Samsu Koroma ◽  
Nils Brown ◽  
Giuseppe Cardellini ◽  
Maarten Messagie

The potential environmental impacts of producing and using future electric vehicles (EVs) are important given their expected role in mitigating global climate change and local air pollutants. Recently, studies have begun assessing the effect of potential future changes in EVs supply chains on overall environmental performance. This study contributes by integrating expected changes in future energy, iron, and steel production in the life cycle assessment (LCA) of EVs. In this light, the study examines the impacts of changes in these parameters on producing and charging future EVs. Future battery electric vehicles (BEV) could have a 36–53% lower global warming potential (GWP) compared to current BEV. The change in source of electricity generation accounts for 89% of GWP reductions over the BEV’s life cycle. Thus, it presents the highest GWP reduction potential of 35–48%. The use of hydrogen for direct reduction of iron in steelmaking (HDR-I) is expected to reduce vehicle production GWP by 17% compared to current technology. By accounting for 9% of the life cycle GWP reductions, HDR-I has the second-highest reduction potential (1.3–4.8%). The results also show that the potential for energy efficiency improvement measures for GWP reduction in vehicle and battery manufacture would be more beneficial when applied now than in the distant future (2050), when the CO2 intensity of the EU electricity is expected to be lower. Interestingly, under the same conditions, the high share of renewable energy in vehicle supply chains contributed to a decrease in all air pollution-related impact categories, but an increase in toxicity-related categories, as well as land use and water consumption.


Energy ◽  
2012 ◽  
Vol 48 (1) ◽  
pp. 406-414 ◽  
Author(s):  
Giorgia Peri ◽  
Marzia Traverso ◽  
Matthias Finkbeiner ◽  
Gianfranco Rizzo

Sign in / Sign up

Export Citation Format

Share Document