scholarly journals Lorentz invariance violation and γ-ray propagation: Detectability by very-high-energy γ-detectors

Author(s):  
Nick E. Mavromatos
2012 ◽  
Vol 27 (19) ◽  
pp. 1250104 ◽  
Author(s):  
IMAN MOTIE ◽  
SHE-SHENG XUE

Due to quantum gravity fluctuations at the Planck scale, the space–time manifold is no longer continuous, but discretized. As a result the Lorentz symmetry is broken at very high energies. In this paper, we study the neutrino oscillation pattern due to the Lorentz invariance violation (LIV), and compare it with the normal neutrino oscillation pattern due to neutrino masses. We find that at very high energies, neutrino oscillation pattern is very different from the normal one. This could provide an possibility to study the Lorentz invariance violation by measuring the oscillation pattern of very high energy neutrinos from a cosmological distance.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Petr Satunin

AbstractWe present new two-sided constraints on the Lorentz Invariance violation energy scale for photons with quartic dispersion relation from recent gamma ray observations by the Tibet-AS$$\gamma $$ γ and LHAASO experiments. The constraints are based on the consideration of the processes of photon triple splitting (superluminal scenario) and the suppression of shower formation (subluminal). The constraints in the subluminal scenario are better than the pair production constraints and are the strongest in the literature.


2020 ◽  
Vol 633 ◽  
pp. A143 ◽  
Author(s):  
C. Perennes ◽  
H. Sol ◽  
J. Bolmont

Context. High-energy photons emitted by flaring active galactic nuclei (AGNs) have been used for many years to constrain modified dispersion relations in vacuum encountered in the context of quantum gravity phenomenology. In such studies, done in the GeV–TeV range, energy-dependent delays (spectral lags) are searched for, usually neglecting any source-intrinsic time delay. Aims. With the aim being to distinguish Lorentz invariance violation (LIV) effects from lags generated at the sources themselves, a detailed investigation into intrinsic spectral lags in flaring AGNs above 100 GeV is presented in the frame of synchrotron-self-Compton scenarios for their very-high-energy (VHE) emission. Methods. A simple model of VHE flares in blazars is proposed, allowing to explore the influence of the main physical parameters describing the emitting zones on intrinsic delays. Results. For typical conditions expected in TeV blazars, significant intrinsic lags are obtained, which can dominate over LIV effects, especially at low redshifts, and should therefore be carefully disentangled from any extrinsic lags. Moreover, two main regimes are identified with characteristic spectral lags, corresponding to long-lasting and fast particle acceleration. Conclusions. Such intrinsic spectral lags should be detected with new-generation instruments at VHE such as the Cherenkov Telescope Array which begins operation in a few years. This will provide original constraints on AGN flare models and open a new era for LIV searches in the photon sector.


2013 ◽  
Vol 777 (1) ◽  
pp. L18 ◽  
Author(s):  
Y. T. Tanaka ◽  
C. C. Cheung ◽  
Y. Inoue ◽  
Ł. Stawarz ◽  
M. Ajello ◽  
...  

2018 ◽  
Vol 861 (2) ◽  
pp. 134 ◽  
Author(s):  
A. U. Abeysekara ◽  
A. Archer ◽  
T. Aune ◽  
W. Benbow ◽  
R. Bird ◽  
...  

Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 421
Author(s):  
Mathieu de Naurois

Thirty years after the discovery of the first very-high-energy γ-ray source by the Whipple telescope, the field experienced a revolution mainly driven by the third generation of imaging atmospheric Cherenkov telescopes (IACTs). The combined use of large mirrors and the invention of the imaging technique at the Whipple telescope, stereoscopic observations, developed by the HEGRA array and the fine-grained camera, pioneered by the CAT telescope, led to a jump by a factor of more than ten in sensitivity. The advent of advanced analysis techniques led to a vast improvement in background rejection, as well as in angular and energy resolutions. Recent instruments already have to deal with a very large amount of data (petabytes), containing a large number of sources often very extended (at least within the Galactic plane) and overlapping each other, and the situation will become even more dramatic with future instruments. The first large catalogues of sources have emerged during the last decade, which required numerous, dedicated observations and developments, but also made the first population studies possible. This paper is an attempt to summarize the evolution of the field towards the building up of the source catalogues, to describe the first population studies already made possible, and to give some perspectives in the context of the upcoming, new generation of instruments.


2012 ◽  
Vol 750 (2) ◽  
pp. 94 ◽  
Author(s):  
E. Aliu ◽  
S. Archambault ◽  
T. Arlen ◽  
T. Aune ◽  
M. Beilicke ◽  
...  

2009 ◽  
Vol 693 (1) ◽  
pp. 303-310 ◽  
Author(s):  
J. Albert ◽  
E. Aliu ◽  
H. Anderhub ◽  
L. A. Antonelli ◽  
P. Antoranz ◽  
...  

2007 ◽  
Vol 467 (3) ◽  
pp. 1075-1080 ◽  
Author(s):  
F. Aharonian ◽  
A. G. Akhperjanian ◽  
A. R. Bazer-Bachi ◽  
M. Beilicke ◽  
W. Benbow ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document