A NEW APPROACH TO THE MODELLING OF VORTEX-BASED SUCTION CUPS FOR CLIMBING ROBOT ADHESION

2012 ◽  
pp. 265-272 ◽  
Author(s):  
FILIPPO BONACCORSO ◽  
GIOVANNI MUSCATO ◽  
ARTURO PAGANO ◽  
ALBERTO FICHERA
Author(s):  
Xiaolong Lu ◽  
Shiping Zhao ◽  
Xiaoyu Liu ◽  
Yishu Wang

Purpose The purpose of this paper is to describe the design and development of “Pylon-Climber II”, a 5-DOF biped climbing robot (degree of freedom – DOF) for moving on the external surface of a tower and assisting the electricians to complete some maintenance tasks. Design/methodology/approach The paper introduces a pole-climbing robot, which consists of a 5-DOF mechanical arm and two novel grippers. The gripper is composed of a two-finger clamping module and a retractable L-shaped hook module. The robot is symmetrical in structure, and the rotary joint for connecting two arms is driven by a linear drive mechanism. Findings The developed prototype proved a new approach for the inspection and maintenance of the electricity pylon. The gripper can reliably grasp the angle bars with different specifications by using combined movement of the two-finger clamping module and the retractable L-shaped hook module and provide sufficient adhesion force for the Pylon-Climber II. Practical implications The clamping experiments of the gripper and the climbing experiments of the robot were carried out on a test tower composed of some angle bars with different specification. Originality/value This paper includes the design and development of a 5-DOF biped climbing robot for electricity pylon maintenance. The climbing robot can move on the external surface of the electric power tower through grasping the angle bar alternatively. The gripper that is composed of a two-finger gripping module and a retractable L-shaped hook module is very compact and can provide reliable adhesion force for the climbing robot.


Robotics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 26
Author(s):  
Dingxin Ge ◽  
Yongchen Tang ◽  
Shugen Ma ◽  
Takahiro Matsuno ◽  
Chao Ren

This paper proposes a pressing method for wall-climbing robots to prevent them from falling. In order to realize the method, the properties of the utilized suction cup are studied experimentally. Then based on the results, a guide rail is designed to distribute the attached suction cup force and implement the pressing method. A prototype of a wall-climbing robot that utilizes passive suction cups and one motor is used to demonstrate the proposed method. An experimental test-bed is designed to measure the force changes of the suction cup when the robot climbs upwards. The experimental results validate that the suction cup can completely attach to the surface by the proposed method, and demonstrate that the robot can climb upwards without falling.


Author(s):  
SIBAO WANG ◽  
DOMINICO ADRIAN SUNDJAJA ◽  
GUOJIE LAN ◽  
XIN ZHENG ◽  
CHEE-MENG CHEW ◽  
...  

Author(s):  
Bingshan Hu ◽  
Liwen Wang ◽  
Yanzheng Zhao ◽  
Z. Fu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document