scholarly journals A Pressing Attachment Approach for a Wall-Climbing Robot Utilizing Passive Suction Cups

Robotics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 26
Author(s):  
Dingxin Ge ◽  
Yongchen Tang ◽  
Shugen Ma ◽  
Takahiro Matsuno ◽  
Chao Ren

This paper proposes a pressing method for wall-climbing robots to prevent them from falling. In order to realize the method, the properties of the utilized suction cup are studied experimentally. Then based on the results, a guide rail is designed to distribute the attached suction cup force and implement the pressing method. A prototype of a wall-climbing robot that utilizes passive suction cups and one motor is used to demonstrate the proposed method. An experimental test-bed is designed to measure the force changes of the suction cup when the robot climbs upwards. The experimental results validate that the suction cup can completely attach to the surface by the proposed method, and demonstrate that the robot can climb upwards without falling.

2011 ◽  
Vol 201-203 ◽  
pp. 1837-1844
Author(s):  
Xiao Yang Zhao ◽  
Rong Liu ◽  
Ke Wang ◽  
Jun Hu He

This template explains and demonstrates how to prepare your camera-ready paper for In this paper, the pulse vibrating suction method (PVSM) for wall climbing robot is presented, which is based on the principle of vibrating suction method. To analyze this method in depth and evaluate its performance, a simplified mathematical model based on some assumptions is built, and a new experimental platform for single suction cup is developed as well. Experiments on single suction cups indicate that the experimental results match the mathematical model well with only small deviation, which is caused by some unknown factors. Then experiments are carried out on a vibrating suction module which was developed previously. With the PVSM, the suction module can stay on the wall stabely, which verifies the vadality of this vibrating method. Suction failures for the module are also analyzed with different control parameters.


10.5772/7228 ◽  
2009 ◽  
Vol 6 (3) ◽  
pp. 29 ◽  
Author(s):  
Hu Bing-Shan ◽  
Wang Li-Wen ◽  
Fu Zhuang ◽  
Zhao Yan-zheng

Wall climbing robots using negative pressure suction always employ air pumps which have great noise and large volume. Two prototypes of bio-inspired miniature suction cup actuated by shape memory alloy (SMA) are designed based on studying characteristics of biologic suction apparatuses, and the suction cups in this paper can be used as adhesion mechanisms for miniature wall climbing robots without air pumps. The first prototype with a two-way shape memory effect (TWSME) extension TiNi spring imitates the piston structure of the stalked sucker; the second one actuated by a one way SMA actuator with a bias has a basic structure of stiff margin, guiding element, leader and elastic element. Analytical model of the second prototype is founded considering the constitutive model of the SMA actuator, the deflection of the thin elastic plate under compound load and the thermo-dynamic model of the sealed air cavity. Experiments are done to test their suction characteristics, and the analytical model of the second prototype is simulated on Matlab/simulink platform and validated by experiments.


Robotica ◽  
2020 ◽  
Vol 39 (1) ◽  
pp. 3-22 ◽  
Author(s):  
Jinfu Liu ◽  
Linsen Xu ◽  
Shouqi Chen ◽  
Hong Xu ◽  
Gaoxin Cheng ◽  
...  

SUMMARYA novel wall-climbing robot with multiple attachment modes is proposed. For uneven surfaces, the mechanical model of a spine wheel is brought out to grab the surfaces with its multi-spines. For smooth surfaces, an adhesive belt is obtained by the industrial synchronous belt and the polyurethane material to adhere to the surfaces. To avoid the robot overturning, an adsorption device with flexible skirt edge is presented. In addition, the normal force and motor torque are evaluated respectively. Finally, the prototype of the wall-climbing robot is manufactured and tested, and the experimental results show that the robot could climb the wall surface 0–360° with a maximum load of 0.5 kg.


2016 ◽  
Vol 28 (2) ◽  
pp. 194-197 ◽  
Author(s):  
Saeko Tokuomi ◽  
◽  
Kazuya Mori

[abstFig src='/00280002/10.jpg' width=""300"" text='Claws attached to suction cups' ]Efficient economical test methods are widely needed worldwide. One target of this is to develop climbing robots that check for defects in concrete. These concrete-wall-climbing robots generally use suction cups to support themselves and test apparatus, but the danger exists of this expensive equipment falling. This may occur due to one of two reasons. The first is inadequate ring-seal decompression in suction cups and the second is suction cup slippage. We have added claws to suction cups to help prevent slippage. The claws we developed are attached to the suction cups to help grip the wall. In the sections below, we discuss the scratch tests we performed to test claw effectiveness in improving suction cup grip. We then prove through tests under actual conditions that the estimated grip force matched that of an actual suction cup's grip force with the claw.


2011 ◽  
Vol 495 ◽  
pp. 91-95 ◽  
Author(s):  
Jose Andrés Somolinos ◽  
Rafael Morales ◽  
Carlos Morón ◽  
Alfonso Garcia

Force sensors are used when interaction tasks are carried out by robots in general, and by climbing robots in particular. If the mechanics and electronics systems are contained inside the own robot, the robot becomes portable without external control. Commercial force sensors cannot be used due to limited space and weight. By selecting the links material with appropriate stiffness and placing strain gauges on the structure, the own robot flexibility can be used such as force sensor. Thus, forces applied on the robot tip can be measured without additional external devices. Only gauges and small internal electronic converters are necessary. This paper illustrates the proposed algorithm to achieve these measurements. Additionally, experimental results are presented.


Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 50
Author(s):  
Hideyuki Tsukagoshi ◽  
Yuichi Osada

A universal suction cup that can stick to various objects expands the areas in which robots can work. However, the size, shape, and surface roughness of objects to which conventional suction cups can stick are limited. To overcome this challenge, we propose a new hybrid suction cup structure that uses the adhesive force of sticky gel and the suction force of negative pressure. In addition, a flexible and thin pneumatic balloon actuator with a check valve function is installed in the interior, enabling the controllable detachment from objects. The prototype has an outer diameter of 55 mm, a weight of 18.8 g, and generates an adsorption force of 80 N in the vertical direction and 60 N in the shear direction on porous walls where conventional suction cups struggle to adsorb. We confirmed that parts smaller than the suction cup and fragile potato chips are adsorbed by the prototype. Finally, the effectiveness of the proposed method is verified through experiments in which a drone with the prototypes can be attached to and detached from concrete walls and ceilings while flying; the possibility of adsorption to dusty and wet plates is discussed.


Sign in / Sign up

Export Citation Format

Share Document