Some bounds on the minimum number of queries required for quantum channel perfect discrimination
We prove a lower bound on the $q$-maximal fidelities between two quantum channels $\E_0$ and $\E_1$ and an upper bound on the $q$-maximal fidelities between a quantum channel $\E$ and an identity $\I$. Then we apply these two bounds to provide a simple sufficient and necessary condition for sequential perfect distinguishability between $\E$ and $\I$ and provide both a lower bound and an upper bound on the minimum number of queries required to sequentially perfectly discriminating $\E$ and $\I$. Interestingly, in the $2$-dimensional case, both bounds coincide. Based on the optimal perfect discrimination protocol presented in \cite{DFY09}, we can further generalize the lower bound and upper bound to the minimum number of queries to perfectly discriminating $\E$ and $I$ over all possible discrimination schemes. Finally the two lower bounds are shown remain working for perfectly discriminating general two quantum channels $\E_0$ and $\E_1$ in sequential scheme and over all possible discrimination schemes respectively.