Some bounds on the minimum number of queries required for quantum channel perfect discrimination

2012 ◽  
Vol 12 (1&2) ◽  
pp. 138-148
Author(s):  
Cheng Lu ◽  
Jianxin Chen ◽  
Runyao Duan

We prove a lower bound on the $q$-maximal fidelities between two quantum channels $\E_0$ and $\E_1$ and an upper bound on the $q$-maximal fidelities between a quantum channel $\E$ and an identity $\I$. Then we apply these two bounds to provide a simple sufficient and necessary condition for sequential perfect distinguishability between $\E$ and $\I$ and provide both a lower bound and an upper bound on the minimum number of queries required to sequentially perfectly discriminating $\E$ and $\I$. Interestingly, in the $2$-dimensional case, both bounds coincide. Based on the optimal perfect discrimination protocol presented in \cite{DFY09}, we can further generalize the lower bound and upper bound to the minimum number of queries to perfectly discriminating $\E$ and $I$ over all possible discrimination schemes. Finally the two lower bounds are shown remain working for perfectly discriminating general two quantum channels $\E_0$ and $\E_1$ in sequential scheme and over all possible discrimination schemes respectively.

2014 ◽  
Vol 25 (03) ◽  
pp. 343-353 ◽  
Author(s):  
YU ZHOU ◽  
LIN WANG ◽  
WEIQIONG WANG ◽  
XINFENG DONG ◽  
XIAONI DU

The Global Avalanche Characteristics (including the sum-of-squares indicator and the absolute indicator) measure the overall avalanche characteristics of a cryptographic Boolean function. Son et al. (1998) gave the lower bound on the sum-of-squares indicator for a balanced Boolean function. In this paper, we give a sufficient and necessary condition on a balanced Boolean function reaching the lower bound on the sum-of-squares indicator. We also analyze whether these balanced Boolean functions exist, and if they reach the lower bounds on the sum-of-squares indicator or not. Our result implies that there does not exist a balanced Boolean function with n-variable for odd n(n ≥ 5). We conclude that there does not exist a m(m ≥ 1)-resilient function reaching the lower bound on the sum-of-squares indicator with n-variable for n ≥ 7.


Algorithmica ◽  
2021 ◽  
Author(s):  
Seungbum Jo ◽  
Rahul Lingala ◽  
Srinivasa Rao Satti

AbstractWe consider the problem of encoding two-dimensional arrays, whose elements come from a total order, for answering $${\text{Top-}}{k}$$ Top- k queries. The aim is to obtain encodings that use space close to the information-theoretic lower bound, which can be constructed efficiently. For an $$m \times n$$ m × n array, with $$m \le n$$ m ≤ n , we first propose an encoding for answering 1-sided $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries, whose query range is restricted to $$[1 \dots m][1 \dots a]$$ [ 1 ⋯ m ] [ 1 ⋯ a ] , for $$1 \le a \le n$$ 1 ≤ a ≤ n . Next, we propose an encoding for answering for the general (4-sided) $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries that takes $$(m\lg {{(k+1)n \atopwithdelims ()n}}+2nm(m-1)+o(n))$$ ( m lg ( k + 1 ) n n + 2 n m ( m - 1 ) + o ( n ) ) bits, which generalizes the joint Cartesian tree of Golin et al. [TCS 2016]. Compared with trivial $$O(nm\lg {n})$$ O ( n m lg n ) -bit encoding, our encoding takes less space when $$m = o(\lg {n})$$ m = o ( lg n ) . In addition to the upper bound results for the encodings, we also give lower bounds on encodings for answering 1 and 4-sided $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries, which show that our upper bound results are almost optimal.


10.37236/3097 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Fateme Raei Barandagh ◽  
Amir Rahnamai Barghi

Let $n>1$ be an integer and $p$ be a prime number. Denote by $\mathfrak{C}_{p^n}$ the class of non-thin association $p$-schemes of degree $p^n$. A sharp upper and lower bounds on the rank of schemes in $\mathfrak{C}_{p^n}$ with a certain order of thin radical are obtained. Moreover, all schemes in this class whose rank are equal to the lower bound are characterized and some schemes in this class whose rank are equal to the upper bound are constructed. Finally, it is shown that the scheme with minimum rank in $\mathfrak{C}_{p^n}$ is unique up to isomorphism, and it is a fusion of any association $p$-schemes with degree $p^n$.


2015 ◽  
Vol 15 (7&8) ◽  
pp. 685-693
Author(s):  
Chi-Hang F. Fung ◽  
H. F. Chau ◽  
Chi-Kwong Li ◽  
Nung-Sing Sze

We derive a formula for the time-energy costs of general quantum channels proposed in [Phys. Rev. A {\bf 88}, 012307 (2013)]. This formula allows us to numerically find the time-energy cost of any quantum channel using positive semidefinite programming. We also derive a lower bound to the time-energy cost for any channels and the exact the time-energy cost for a class of channels which includes the qudit depolarizing channels and projector channels as special cases.


2013 ◽  
Vol 50 (1) ◽  
pp. 195-207 ◽  
Author(s):  
Bin Li ◽  
Qihe Tang ◽  
Xiaowen Zhou

We study the two-sided exit problem of a time-homogeneous diffusion process with tax payments of loss-carry-forward type and obtain explicit formulae for the Laplace transforms associated with the two-sided exit problem. The expected present value of tax payments until default, the two-sided exit probabilities, and, hence, the nondefault probability with the default threshold equal to the lower bound are solved as immediate corollaries. A sufficient and necessary condition for the tax identity in ruin theory is discovered.


2017 ◽  
Vol 7 (2) ◽  
pp. 169-181
Author(s):  
Audra McMillan ◽  
Adam Smith

Abstract Block graphons (also called stochastic block models) are an important and widely studied class of models for random networks. We provide a lower bound on the accuracy of estimators for block graphons with a large number of blocks. We show that, given only the number $k$ of blocks and an upper bound $\rho$ on the values (connection probabilities) of the graphon, every estimator incurs error ${\it{\Omega}}\left(\min\left(\rho, \sqrt{\frac{\rho k^2}{n^2}}\right)\right)$ in the $\delta_2$ metric with constant probability for at least some graphons. In particular, our bound rules out any non-trivial estimation (that is, with $\delta_2$ error substantially less than $\rho$) when $k\geq n\sqrt{\rho}$. Combined with previous upper and lower bounds, our results characterize, up to logarithmic terms, the accuracy of graphon estimation in the $\delta_2$ metric. A similar lower bound to ours was obtained independently by Klopp et al.


1949 ◽  
Vol 14 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Frederic B. Fitch

A demonstrably consistent theory of real numbers has been outlined by the writer in An extension of basic logic1 (hereafter referred to as EBL). This theory deals with non-negative real numbers, but it could be easily modified to deal with negative real numbers also. It was shown that the theory was adequate for proving a form of the fundamental theorem on least upper bounds and greatest lower bounds. More precisely, the following results were obtained in the terminology of EBL: If С is a class of U-reals and is completely represented in Κ′ and if some U-real is an upper bound of С, then there is a U-real which is a least upper bound of С. If D is a class of (U-reals and is completely represented in Κ′, then there is a U-real which is a greatest lower bound of D.


2001 ◽  
Vol 11 (04) ◽  
pp. 401-421 ◽  
Author(s):  
ALEJANDRO LÓPEZ-ORTIZ ◽  
SVEN SCHUIERER

We present lower bounds for on-line searching problems in two special classes of simple polygons called streets and generalized streets. In streets we assume that the location of the target is known to the robot in advance and prove a lower bound of [Formula: see text] on the competitive ratio of any deterministic search strategy—which can be shown to be tight. For generalized streets we show that if the location of the target is not known, then there is a class of orthogonal generalized streets for which the competitive ratio of any search strategy is at least [Formula: see text] in the L2-metric—again matching the competitive ratio of the best known algorithm. We also show that if the location of the target is known, then the competitive ratio for searching in generalized streets in the L1-metric is at least 9 which is tight as well. The former result is based on a lower bound on the average competitive ratio of searching on the real line if an upper bound of D to the target is given. We show that in this case the average competitive ratio is at least 9-O(1/ log D).


2008 ◽  
Vol Vol. 10 no. 3 ◽  
Author(s):  
Cyril Gavoille ◽  
Nicolas Hanusse

International audience In this paper we show an information-theoretic lower bound of kn - o(kn) on the minimum number of bits to represent an unlabeled simple connected n-node graph of pagenumber k. This has to be compared with the efficient encoding scheme of Munro and Raman of 2kn + 2m + o(kn+m) bits (m the number of edges), that is 4kn + 2n + o(kn) bits in the worst-case. For m-edge graphs of pagenumber k (with multi-edges and loops), we propose a 2mlog2k + O(m) bits encoding improving the best previous upper bound of Munro and Raman whenever m ≤ 1 / 2kn/log2 k. Actually our scheme applies to k-page embedding containing multi-edge and loops. Moreover, with an auxiliary table of o(m log k) bits, our coding supports (1) the computation of the degree of a node in constant time, (2) adjacency queries with O(logk) queries of type rank, select and match, that is in O(logk *minlogk / loglogm, loglogk) time and (3) the access to δ neighbors in O(δ) runs of select, rank or match;.


10.37236/9687 ◽  
2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Surya Mathialagan

Given sets $\mathcal{P}, \mathcal{Q} \subseteq \mathbb{R}^2$ of sizes $m$ and $n$ respectively, we are interested in the number of distinct distances spanned by $\mathcal{P} \times \mathcal{Q}$. Let $D(m, n)$ denote the minimum number of distances determined by sets in $\mathbb{R}^2$ of sizes $m$ and $n$ respectively, where $m \leq n$. Elekes showed that $D(m, n) = O(\sqrt{mn})$ when $m \leqslant n^{1/3}$. For $m \geqslant n^{1/3}$, we have the upper bound $D(m, n) = O(n/\sqrt{\log n})$ as in the classical distinct distances problem.In this work, we show that Elekes' construction is tight by deriving the lower bound of $D(m, n) = \Omega(\sqrt{mn})$ when $m \leqslant n^{1/3}$. This is done by adapting Székely's crossing number argument. We also extend the Guth and Katz analysis for the classical distinct distances problem to show a lower bound of $D(m, n) = \Omega(\sqrt{mn}/\log n)$ when $m \geqslant n^{1/3}$.


Sign in / Sign up

Export Citation Format

Share Document