scholarly journals CONTINUITY OF THE FOUR-POINT FUNCTION OF MASSIVE $\varphi_{4}^{4}$-THEORY ABOVE THRESHOLD

2007 ◽  
Vol 19 (07) ◽  
pp. 725-747 ◽  
Author(s):  
CHRISTOPH KOPPER

In this paper we prove that the four-point function of massive [Formula: see text]-theory is continuous as a function of its independent external momenta when posing the renormalization condition for the (physical) mass on-shell. The proof is based on integral representations derived inductively from the perturbative flow equations of the renormalization group. It closes a longstanding loophole in rigorous renormalization theory in so far as it shows the feasibility of a physical definition of the renormalized coupling.

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
François Delduc ◽  
Sylvain Lacroix ◽  
Konstantinos Sfetsos ◽  
Konstantinos Siampos

Abstract In the study of integrable non-linear σ-models which are assemblies and/or deformations of principal chiral models and/or WZW models, a rational function called the twist function plays a central rôle. For a large class of such models, we show that they are one-loop renormalizable, and that the renormalization group flow equations can be written directly in terms of the twist function in a remarkably simple way. The resulting equation appears to have a universal character when the integrable model is characterized by a twist function.


2001 ◽  
Vol 16 (11) ◽  
pp. 2119-2124 ◽  
Author(s):  
B.-J. SCHAEFER ◽  
O. BOHR ◽  
J. WAMBACH

Self-consistent new renormalization group flow equations for an O(N)-symmetric scalar theory are approximated in next-to-leading order of the derivative expansion. The Wilson-Fisher fixed point in three dimensions is analyzed in detail and various critical exponents are calculated.


1995 ◽  
Vol 10 (21) ◽  
pp. 1543-1548 ◽  
Author(s):  
VIPUL PERIWAL

The free energy is shown to decrease along Wilson renormalization group trajectories, in a dimension-independent fashion, for d>2. The argument assumes the monotonicity of the cutoff function, and positivity of a spectral representation of the two-point function. The argument is valid for all orders in perturbation theory.


Author(s):  
Jean Zinn-Justin

A straightforward construction of a local, relativistic quantum field theory (QFT) leads to ultraviolet (UV) divergences and a QFT has to be regularized by modifying its short-distance or large energy momentum structure (momentum regularization is often used in this work). Since such a modification is somewhat arbitrary, it is necessary to verify that the resulting large-scale predictions are, at least to a large extent, short-distance insensitive. Such a verification relies on the renormalization theory and the corresponding renormalization group (RG). In this chapter, the essential steps of a proof of the perturbative renormalizability of the scalar φ4 QFT in dimension 4 are described. All the basic difficulties of renormalization theory, based on power counting, are already present in this simple example. The elegant presentation of Callan is followed, which makes it possible to prove renormalizability and RG equations (in Callan–Symanzik's (CS) form) simultaneously. The background of the discussion is effective QFT and emergent renormalizable theory. The concept of fine tuning and the issue of triviality are emphasized.


1970 ◽  
Vol 13 (4) ◽  
pp. 431-439 ◽  
Author(s):  
James A. Dyer

The purpose of this paper is to consider a representation for the elements of a linear topological space in the form of a σ-integral over a linearly ordered subset of V; this ordered subset is what will be called an L basis. The formal definition of an L basis is essentially an abstraction from ideas used, often tacitly, in proofs of many of the theorems concerning integral representations for continuous linear functionals on function spaces.The L basis constructed in this paper differs in several basic ways from the integral basis considered by Edwards in [5]. Since the integrals used here are of Hellinger type rather than Radon type one has in the approximating sums for the integral an immediate and natural analogue to the partial sum operators of summation basis theory.


1994 ◽  
Vol 09 (07) ◽  
pp. 1153-1180 ◽  
Author(s):  
Y. YAMANAKA ◽  
H. UMEZAWA ◽  
K. NAKAMURA ◽  
T. ARIMITSU

Making use of the thermo field dynamics (TFD) we formulate a calculable method for time-dependent nonequilibrium systems in a time representation (t-representation) rather than in the k0-Fourier representation. The corrected one-body propagator in the t-representation has the form of B−1 (diagonal matrix) B (B being a thermal Bogoliubov matrix). The number parameter in B here is the observed number (the Heisenberg number) with a fluctuation. With the usual definition of the on-shell self-energy a self-consistent renormalization condition leads to a kinetic equation for the number parameter. This equation turns out to be the Boltzmann equation, from which the entropy law follows.


2008 ◽  
Vol 77 (3) ◽  
Author(s):  
E. Anderson ◽  
S. K. Bogner ◽  
R. J. Furnstahl ◽  
E. D. Jurgenson ◽  
R. J. Perry ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document