RECEPTIVE FIELD PROPERTIES OF NEAR NEIGHBOR ORIENTATION SELECTIVE NEURONS IN THE VISUAL CORTEX: A MODELING STUDY

2005 ◽  
Vol 15 (01n02) ◽  
pp. 31-40
Author(s):  
BASABI BHAUMIK ◽  
ALOK AGARWAL ◽  
MANISH MANOHAR

The primary visual cortex is organized into clusters of cells having similar receptive fields (RFs). A purely feedforward model has been shown to produce realistic simple cell receptive fields. The modeled cells capture a wide range of receptive field properties of orientation selective cortical cells. We have analyzed the responses of 78 nearby cell pairs to study which RF properties are clustered. Orientation preference shows strongest clustering. Orientation tuning width (hwhh) and tuning height (spikes/sec) at the preferred orientation are not as tightly clustered. Spatial frequency is also not as tightly clustered and RF phase has the least clustering. Clustering property of orientation preference, orientation tuning height and width depend on the location of cells in the orientation map. No such location dependence is observed for spatial frequency and RF phase. Our results agree well with experimental data.

1983 ◽  
Vol 49 (3) ◽  
pp. 804-818 ◽  
Author(s):  
D. G. Tieman ◽  
M. A. McCall ◽  
H. V. Hirsch

1. In order to investigate the effects of an imbalance in stimulation to the eyes without the confounding influence of continuous deprivation of one eye, we reared cats with unequal alternating monocular exposure (AME) and, for comparison, cats with equal AME. We recorded extracellularly from single cells in area 17 of visual cortex. 2. For unequal AME cats, a majority of the cells that were visually responsive were dominated by the eye that had received more patterned visual experience. The percentage of cells dominated by the more experienced eye was greater with a large imbalance in stimulation to the two eyes (AME 8/1, 77%) than with a small imbalance (AME 8/4, 62%). 3. For both equal AME cats and unequal AME cats, we obtained evidence for differences in cells activated by the contralateral and by the ipsilateral afferents. a) In equal AME cats receiving only 1 h of exposure per day, we obtained a greater dominance by the contralateral eye (60%) than in equal AME cats receiving 8 h of exposure per day (42%). b) Although a large imbalance in stimulation (AME 8/1) resulted in a shift in ocular dominance in both cortical hemispheres, a moderate imbalance (AME 8/4) resulted in a smaller shift, which was apparent only in the hemisphere ipsilateral to the less-experienced eye. 4. The percentage of cortical cells responsive to each eye was uniform throughout the depth of cortex. Thus, for the unequal AME cats, cells activated by the less-experienced eye were no more frequent in layer IV of visual cortex than in the infragranular and supragranular layers. 5. Although almost all cells recorded from AME cats had relatively normal receptive-field properties, three receptive-field properties of cells in unequal AME cats showed an effect of the rearing. In each case cells dominated by the less-experienced eye and recorded in the cortical hemisphere ipsilateral to it showed the largest changes. These cells a) were more poorly tuned, b) had lower cutoff velocities, and c) had smaller receptive fields. 6. It is suggested that cortical cells that putatively receive Y-cell afferents from the dorsal lateral geniculate nucleus (LGNd) are more affected by an imbalance in stimulation than are cortical cells that putatively receive X-cell afferents. Thus, the decrease in mean receptive-field area and cutoff velocity for the cells dominated by the less-experienced eye is suggested to be due to a greater shift in ocular dominance by the cortical cells receiving Y-cell afferents from the LGNd. 7. The interaction between binocular competition and deprivation of pattern vision may contribute to differences between monocularly deprived cats and unequal AME cats.


2020 ◽  
Author(s):  
Jaeson Jang ◽  
Min Song ◽  
Gwangsu Kim ◽  
Se-Bum Paik

AbstractIn higher mammals, the primary visual cortex (V1) is organized into diverse tuning maps of visual features such as orientation, spatial frequency and ocular dominance. The topography of these maps is observed to intersect orthogonally, implying that a developmental principle for efficient tiling of sensory modules may exist. However, it remains unclear how such a systematic relationship among cortical tuning maps could develop. Here, we show that the orthogonal organization of tuning modules already exist in retinal ganglion cell (RGC) mosaics, and that this provides a blueprint of the orthogonal organization in V1. Firstly, from the analysis of multi-electrode recording data in V1, we found that the ON-OFF subregion distance of receptive fields varies periodically across the cortical surface, strongly correlated to ocular dominance and spatial frequency in the area. Further, the ON-OFF alignment angle, that is orthogonal to the ON-OFF distance, appears to correlate with orientation tuning. These suggest that the orthogonal organization in V1 may originate from the spatial organization of the ON-OFF receptive fields in the bottom-up projections, and this scenario was tested from analysis of the RGC mosaics data in monkeys and cats. We found that the ON-OFF RGC distance and ON-OFF angle of neighbouring RGCs are organized into a topographic tiling across mosaics, analogous to the orthogonal intersection of cortical tuning maps. These findings suggest that the regularly structured ON-OFF patterns mirrored from a retina may initiate efficient tiling of functional domains in V1.HighlightsOrthogonal organization of visual tuning maps are observed in both V1 and the retinaCortical tuning maps are correlated with the profile of ON-OFF feedforward projectionsThe profile of ON-OFF receptive fields varies periodically across the V1 surfaceRegularly structured RGC patterns initiate the orthogonal tiling of sensory modules in V1


1978 ◽  
Vol 41 (4) ◽  
pp. 948-962 ◽  
Author(s):  
A. G. Leventhal ◽  
H. V. Hirsch

1. Receptive-field properties of neurons in the different layers of the visual cortex of normal adult cats were analyzed quantitatively. Neurons were classified into one of two groups: 1) S-cells, which have discrete on- and/or off-regions in their receptive fields and possess inhibitory side bands; 2) C-cells, which do not have discrete on- and off-regions in their receptive fields but display an on-off response to flashing stimuli. Neurons of this type rarely display side-band inhibition. 2. As a group, S-cells display lower relative degrees of binocularity and are more selective for stimulus orientation than C-cells. In addition, within a given lamina the S-cells have smaller receptive fields, lower cutoff velocities, lower peak responses to visual stimulation, and lower spontaneous activity than do the C-cells. 3. S-cells in all layers of the cortex display similar orientation sensitivities, mean spontaneous discharge rates, peak response to visual stimulation, and degrees of binocularity. 4. Many of the receptive-field properties of cortical cells vary with laminar location. Receptive-field sizes and cutoff velocities of S-cells and of C-cells are greater in layers V and VI than in layers II-IV. For S-cells, preferred velocities are also greater in layers V and VI than in layers II-IV. Furthermore, C-cells in layers V and VI display high mean spontaneous discharge rates, weak orientation preferences, high relative degrees of binocularity, and higher peak responses to visual stimulation when compared to C-cells in layers II and III. 5. The receptive-field properties of cells in layers V-VI of the striate cortex suggest that most neurons that have their somata in these laminae receive afferents from LGNd Y-cells. Hence, our results suggest that afferents from LGNd Y-cells may play a major part in the cortical control of subcortical visual functions.


2012 ◽  
Vol 24 (10) ◽  
pp. 2700-2725 ◽  
Author(s):  
Takuma Tanaka ◽  
Toshio Aoyagi ◽  
Takeshi Kaneko

We propose a new principle for replicating receptive field properties of neurons in the primary visual cortex. We derive a learning rule for a feedforward network, which maintains a low firing rate for the output neurons (resulting in temporal sparseness) and allows only a small subset of the neurons in the network to fire at any given time (resulting in population sparseness). Our learning rule also sets the firing rates of the output neurons at each time step to near-maximum or near-minimum levels, resulting in neuronal reliability. The learning rule is simple enough to be written in spatially and temporally local forms. After the learning stage is performed using input image patches of natural scenes, output neurons in the model network are found to exhibit simple-cell-like receptive field properties. When the output of these simple-cell-like neurons are input to another model layer using the same learning rule, the second-layer output neurons after learning become less sensitive to the phase of gratings than the simple-cell-like input neurons. In particular, some of the second-layer output neurons become completely phase invariant, owing to the convergence of the connections from first-layer neurons with similar orientation selectivity to second-layer neurons in the model network. We examine the parameter dependencies of the receptive field properties of the model neurons after learning and discuss their biological implications. We also show that the localized learning rule is consistent with experimental results concerning neuronal plasticity and can replicate the receptive fields of simple and complex cells.


1989 ◽  
Vol 2 (1) ◽  
pp. 3-13 ◽  
Author(s):  
Joseph Bilotta ◽  
Israel Abramov

AbstractOrientation and direction tuning were examined in goldfish ganglion cells by drifting sinusoidal gratings across the receptive field of the cell. Each ganglion cell was first classified as X-, Y- or W-like based on its responses to a contrast-reversal grating positioned at various spatial phases of the cell's receptive field. Sinusoidal gratings were drifted at different orientations and directions across the receptive field of the cell; spatial frequency and contrast of the grating were also varied. It was found that some X-like cells responded similarly to all orientations and directions, indicating that these cells had circular and symmetrical fields. Other X-like cells showed a preference for certain orientations at high spatial frequencies suggesting that these cells possess an elliptical center mechanism (since only the center mechanism is sensitive to high spatial frequencies). In virtually all cases, X-like cells were not directionally tuned. All but one Y-like cell displayed orientation tuning but, as with X-like cells, orientation tuning appeared only at high spatial frequencies. A substantial portion of these Y-like cells also showed a direction preference. This preference was dependent on spatial frequency but in a manner different from orientation tuning, suggesting that these two phenomena result from different mechanisms. All W-like cells possessed orientation and direction tuning, both of which depended on the spatial frequency of the stimulus. These results support past work which suggests that the center and surround components of retinal ganglion cell receptive fields are not necessarily circular or concentric, and that they may actually consist of smaller subareas.


1975 ◽  
Vol 38 (4) ◽  
pp. 735-750 ◽  
Author(s):  
B. Dreher ◽  
L. J. Cottee

1. Receptive-field properties of single neurons in cat's cortical area 18 were studied before and after partial bilateral lesions of area 17. 2. The majority of cells recorded from animals with intact visual cortex exhibited orientation selectivity, directional selectivity, and could be independently activated through either eye. All cells responded well to moving targets and nearly all of them exhibited broadly tuned preferences with respect to speed of the target. Over 45% of cells responded optimally or exclusively at very fast (above 50 degrees/s) speeds. 3. The majority of neurons recorded from animals with intact visual cortex responded weakly but clearly to appropriately oriented localized stationary stimuli flashed on and off. About one-third of the cells responded with mixed on-off discharges from all over their receptive field. In the receptive fields of 10% of cells, separate on- and off-discharge regions could be revealed. In the receptive fields of the remaining cells, only on- or only off-discharge regions could be revealed. 4. The majority of neurons recorded after ablation of area 17 were orientation selective; 50% of the cells were also direction selective. All neurons responded well to moving targets; about 65% of them responded optimally or exclusively at very fast target speeds. 5. Destruction of the dorsolateral part of contralaterial area 17 and most of contralateral area 18 caused significant reduction in proportion of cells in area 18 which could be activated through either eye. 6. The majority of neurons recorded after ablation responded to appropriately oriented localized stationary stimuli flashed on and off. Cells with mixed on-off discharge regions all over the receptive field with separate on- and off-discharge regions and with only on- or only off-discharge regions were found. 7. It is concluded that the processing of afferent visual information in area 18 is, to a great extent, independent of the information carried to this area by associational fibers from cells of area 17.


2003 ◽  
Vol 89 (2) ◽  
pp. 1003-1015 ◽  
Author(s):  
W. Martin Usrey ◽  
Michael P. Sceniak ◽  
Barbara Chapman

The ferret has become a model animal for studies exploring the development of the visual system. However, little is known about the receptive-field structure and response properties of neurons in the adult visual cortex of the ferret. We performed single-unit recordings from neurons in layer 4 of adult ferret primary visual cortex to determine the receptive-field structure and visual-response properties of individual neurons. In particular, we asked what is the spatiotemporal structure of receptive fields of layer 4 neurons and what is the orientation selectivity of layer 4 neurons? Receptive fields of layer 4 neurons were mapped using a white-noise stimulus; orientation selectivity was determined using drifting, sine-wave gratings. Our results show that most neurons (84%) within layer 4 are simple cells with elongated, spatially segregated,on and off subregions. These neurons are also selective for stimulus orientation; peaks in orientation-tuning curves have, on average, a half-width at half-maximum response of 21.5 ± 1.2° (mean ± SD). The remaining neurons in layer 4 (16%) lack orientation selectivity and have center/surround receptive fields. Although the organization of geniculate inputs to layer 4 differs substantially between ferret and cat, our results demonstrate that, like in the cat, most neurons in ferret layer 4 are orientation-selective simple cells.


1976 ◽  
Vol 39 (6) ◽  
pp. 1352-1361 ◽  
Author(s):  
B. L. Finlay ◽  
P. H. Schiller ◽  
S. F. Volman

1. The receptive-field properties of corticotectal cells in the monkey's striate cortex were studied using stationary and moving stimuli. These cells were identified by antidromic activation from the superior colliculus. 2. Corticotectal cells form a relatively homogeneous group. They are found primarily in layers 5 and 6. These cells can usually be classified as CX-type cells but show broader orientation tuning, larger receptive fields, higher spontaneous activity, and greater binocular activation than CX-type cells do in general. A third of the corticotectal cells were direction selective. 3. These results suggest that the cortical input to the superior colliculus is not directly responsible for the receptive-field properties of collicular cells. We propose that this input has a gating function in contributing to the control of the downflow of excitation from the superficial to the deep layers of the colliculus.


1989 ◽  
Vol 2 (2) ◽  
pp. 165-176 ◽  
Author(s):  
N. V. Swindale ◽  
M. S. Cynader

AbstractThe sensitivity of neurons in area 17 of the cat's visual cortex to vernier offset was expressed as the percentage reduction in response caused by the introduction of a given offset into a bar stimulus moving across the receptive field. There was a wide variation in sensitivity: in some cells response could be halved by an offset equal to a fifth of receptive-field width (defined as twice the standard deviation of a Gaussian curve fitted to the response profile), while other cells showed no sensitivity. The highest absolute sensitivities of complex and simple cells were similar, although most cells with poor sensitivity were complex.Sensitivity was largely unaffected by changes in stimulus velocity and stimulus length, although there was a tendency for sensitivity to increase with decreasing bar length.Comparisons of orientation tuning curves with vernier tuning curves showed that the response to a vernier stimulus approximated the response to a single bar of the same overall length and an orientation equal to that of a line joining the midpoints of each bar. This was true for a wide range of sensitivity values.Vernier sensitivity was correlated with a measure of length summation H, which is positive when there is net facilitation between the bars, and negative when there is net inhibition. Vernier sensitivity was highest in cells with large values of H, and least in cells where H was negative.We examined a linear model of the simple cell receptive field which, together with a variable response threshold, was able to explain the correlation between vernier acuity and length summation. Although this model accounted qualitatively for many of our findings, the majority of simple cells had tuning curves that were sharper than the predicted ones. This suggests that there are nonlinearities in the behavior of many simple cells whose effect is to increase the sharpness of orientation tuning and consequently vernier sensitivity.


Sign in / Sign up

Export Citation Format

Share Document