ELECTRONIC STRUCTURE CALCULATIONS OF LOW-DIMENSIONAL SEMICONDUCTOR STRUCTURES USING B-SPLINE BASIS FUNCTIONS

2005 ◽  
Vol 16 (02) ◽  
pp. 237-251
Author(s):  
BORA DIKMEN ◽  
MEHMET TOMAK

An efficient method for the low-dimensional semiconductor structure is investigated. The method is applied to symmetric double rectangular quantum well as an example. A basis set of Cubic B-Splines is used as localized basis functions. The method compares well with analytical solutions and the finite difference method.

1993 ◽  
Vol 115 (3) ◽  
pp. 621-626 ◽  
Author(s):  
D. M. Tsay ◽  
C. O. Huey

A procedure employing rational B-spline functions for the synthesis of cam-follower motion programs is presented. It differs from earlier techniques that employ spline functions by using rational B-spline basis functions to interpolate motion constraints. These rational B-splines permit greater flexibility in refining motion programs. Examples are provided to illustrate application of the approach.


2009 ◽  
Vol 87 (1) ◽  
pp. 67-74 ◽  
Author(s):  
A Derevianko ◽  
E Luc-Koenig ◽  
F Masnou-Seeuws

The B-spline basis-set method is applied to determining the rovibrational eigenspectrum of diatomic molecules. Particular attention is paid to a challenging numerical task of an accurate and efficient description of the vibrational levels near the dissociation limit (halo-state and Feshbach molecules). Advantages of using B-splines are highlighted by comparing the performance of the method with that of the commonly used discrete-variable representation (DVR) approach. Several model cases, including the Morse potential and realistic potentials with 1/R3 and 1/R6 long-range dependence of the internuclear separation are studied. We find that the B-spline method is superior to the DVR approach and it is robust enough to properly describe the Feshbach molecules. The developed numerical method is applied to studying the universal relation of the energy of the last bound state to the scattering length. We illustrate numerically the validity of the quantum-defect-theoretic formulation of such a relation for a 1/R6 potential.PACS Nos.: 31.15.–p,34.50.Cx


Atoms ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 50
Author(s):  
Charlotte Froese Fischer

The paper reviews the history of B-spline methods for atomic structure calculations for bound states. It highlights various aspects of the variational method, particularly with regard to the orthogonality requirements, the iterative self-consistent method, the eigenvalue problem, and the related sphf, dbsr-hf, and spmchf programs. B-splines facilitate the mapping of solutions from one grid to another. The following paper describes a two-stage approach where the goal of the first stage is to determine parameters of the problem, such as the range and approximate values of the orbitals, after which the level of accuracy is raised. Once convergence has been achieved the Virial Theorem, which is evaluated as a check for accuracy. For exact solutions, the V/T ratio for a non-relativistic calculation is −2.


Author(s):  
Joanna M. Brown ◽  
Malcolm I. G. Bloor ◽  
M. Susan Bloor ◽  
Michael J. Wilson

Abstract A PDE surface is generated by solving partial differential equations subject to boundary conditions. To obtain an approximation of the PDE surface in the form of a B-spline surface the finite element method, with the basis formed from B-spline basis functions, can be used to solve the equations. The procedure is simplest when uniform B-splines are used, but it is also feasible, and in some cases desirable, to use non-uniform B-splines. It will also be shown that it is possible, if required, to modify the non-uniform B-spline approximation in a variety of ways, using the properties of B-spline surfaces.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2102
Author(s):  
Abdul Majeed ◽  
Muhammad Abbas ◽  
Faiza Qayyum ◽  
Kenjiro T. Miura ◽  
Md Yushalify Misro ◽  
...  

Trigonometric B-spline curves with shape parameters are equally important and useful for modeling in Computer-Aided Geometric Design (CAGD) like classical B-spline curves. This paper introduces the cubic polynomial and rational cubic B-spline curves using new cubic basis functions with shape parameter ξ∈[0,4]. All geometric characteristics of the proposed Trigonometric B-spline curves are similar to the classical B-spline, but the shape-adjustable is additional quality that the classical B-spline curves does not hold. The properties of these bases are similar to classical B-spline basis and have been delineated. Furthermore, uniform and non-uniform rational B-spline basis are also presented. C3 and C5 continuities for trigonometric B-spline basis and C3 continuities for rational basis are derived. In order to legitimize our proposed scheme for both basis, floating and periodic curves are constructed. 2D and 3D models are also constructed using proposed curves.


Author(s):  
Mohammad Tamsir ◽  
Neeraj Dhiman ◽  
F.S. Gill ◽  
Robin

This paper presents an approximate solution of 3D convection diffusion equation (CDE) using DQM based on modified cubic trigonometric B-spline (CTB) basis functions. The DQM based on CTB basis functions are used to integrate the derivatives of space variables which transformed the CDE into the system of first order ODEs. The resultant system of ODEs is solved using SSPRK (5,4) method. The solutions are approximated numerically and also presented graphically. The accuracy and efficiency of the method is validated by comparing the solutions with existing numerical solutions. The stability analysis of the method is also carried out.


2019 ◽  
Vol 100 (4) ◽  
Author(s):  
San-Jiang Yang ◽  
Yong-Bo Tang ◽  
Yong-Hua Zhao ◽  
Ting-Yun Shi ◽  
Hao-Xue Qiao
Keyword(s):  
B Spline ◽  

2012 ◽  
Vol 09 (01) ◽  
pp. 1240009 ◽  
Author(s):  
JINLIANG GU ◽  
JIANMING ZHANG ◽  
XIAOMIN SHENG

B-spline basis functions as a new approximation method is introduced in the boundary face method (BFM) to obtain numerical solutions of 3D potential problems. In the BFM, both boundary integration and variable approximation are performed in the parametric spaces of the boundary surfaces, therefore, keeps the exact geometric information of a body in which the problem is defined. In this paper, local bivariate B-spline functions are proposed to alleviate the influence of B-spline tensor product that will deteriorate the exactness of numerical results. Numerical tests show that the new method has well performance in both exactness and convergence.


2014 ◽  
Vol 548-549 ◽  
pp. 968-973
Author(s):  
Zhi Gang Xu

Formulas for the derivatives and normal vectors of non-rational B-spline and NURBS are proved based on de BOOR’s recursive formula. Compared with the existing approaches targeting at the non-rational B-spline basis functions, these equations are directly targeted at the controlling points, so the algorithms and programs for NURBS curve and surface can also be applied to the derivatives and normals, the calculating performance is increased. A simplified equation is also proved in this paper.


Sign in / Sign up

Export Citation Format

Share Document