EVOLVING MODEL OF SCALE-FREE NETWORKS WITH INTRINSIC LINKS

2008 ◽  
Vol 19 (07) ◽  
pp. 1129-1144 ◽  
Author(s):  
XIANMIN GENG ◽  
GUANGHUI WEN ◽  
YING WANG ◽  
JINXIA LI

In this paper, we introduce the concept of intrinsic link, which is used to describe the intrinsic interactions between the individuals in complex systems. Furthermore, we present a model for the evolution of complex networks, in which the system dynamics motivated by four mechanisms: the addition of new nodes with preferential attachment, the addition of new nodes with intrinsic attachment, the addition of new links with preferential attachment and the addition of new intrinsic links. The model yields scale-free behavior for the degree distributions as confirmed in many real networks. With continumm theory, we get the analytical expressions of the degree distribution and the scaling exponent γ. The analytical expressions are in good agreement with the numerical simulation results.

2009 ◽  
Vol 20 (11) ◽  
pp. 1719-1735 ◽  
Author(s):  
GUANGHUI WEN ◽  
ZHISHENG DUAN

In this paper, we present a local-world evolving model to characterize weighted networks. By introducing the extended links to mimic the weak interactions between the nodes in different local-worlds, the model yields scale-free behavior as well as the small-world property, as confirmed in many real networks. With the increase of the local information, the generated network undergoes a transition from assortative to disassortative, meanwhile the small-world property is preserved. It indicates that the small-world property is a universal characteristic in our model. The numerical simulation results are in good agreement with the analytical expressions.


2008 ◽  
Vol 22 (05) ◽  
pp. 553-560 ◽  
Author(s):  
WU-JIE YUAN ◽  
XIAO-SHU LUO ◽  
PIN-QUN JIANG ◽  
BING-HONG WANG ◽  
JIN-QING FANG

When being constructed, complex dynamical networks can lose stability in the sense of Lyapunov (i. s. L.) due to positive feedback. Thus, there is much important worthiness in the theory and applications of complex dynamical networks to study the stability. In this paper, according to dissipative system criteria, we give the stability condition in general complex dynamical networks, especially, in NW small-world and BA scale-free networks. The results of theoretical analysis and numerical simulation show that the stability i. s. L. depends on the maximal connectivity of the network. Finally, we show a numerical example to verify our theoretical results.


2011 ◽  
Vol 189-193 ◽  
pp. 2535-2538 ◽  
Author(s):  
Hong Yan ◽  
Wen Xian Huang

The thixo-forging of magnesium matrix composite was analyzed with computer numerical simulation based on rigid viscoplastic finite element method. The constitutive model of SiCp/AZ61 composite was established in our prior literature. Behavior of metal flow and temperature field were obtained. The differences between traditional forging and thixo-forging processes were analyzed. Results indicated that thixo-forging was better in filling cavity than forging. Simulation results were good agreement with experimental ones.


2016 ◽  
Vol 10 (11) ◽  
pp. 203
Author(s):  
Mohd Zaid Othman ◽  
Qasim H. Shah ◽  
Muhammad Akram Muhammad Khan ◽  
Tan Kean Sheng ◽  
M. A. Yahaya ◽  
...  

A series of numerical simulations utilizing LS-DYNA was performed to determine the mid-point deformations of V-shaped plates due to blast loading. The numerical simulation results were then compared with experimental results from published literature. The V-shaped plate is made of DOMEX 700 and is used underneath an armour personal carrier vehicle as an anti-tank mine to mitigate the effects of explosion from landmines in a battlefield. The performed numerical simulations of blast loading of V-shaped plates consisted of various angles i.e. 60°, 90°, 120°, 150° and 180°; variable mass of explosives located at the central mid-point of the V-shaped vertex with various stand-off distances. It could be seen that the numerical simulations produced good agreement with the experimental results where the average difference was about 26.6%.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Wei Wang ◽  
Xiaoming Sun ◽  
Yalan Wang ◽  
Wentian Cui

The preferential attachment mechanism that forms scale-free network cannot display assortativity, i.e., the degree of one node is positively correlated with that of their neighbors in the network. Given the attributes of network nodes, a cultural trait-matching mechanism is further introduced in this paper. Both theoretical analysis and simulation results indicate that the higher selection probability of such mechanism, the more obvious the assortativity is shown in networks. Further, the degree of nodes presents a positive logarithm correlation with that of adjacent ones. Finally, this study discusses the theoretical and practical significances of the introduction of such a cultural trait-matching mechanism.


2017 ◽  
Vol 28 (05) ◽  
pp. 1750064 ◽  
Author(s):  
A. Ould Baba ◽  
O. Bamaarouf ◽  
A. Rachadi ◽  
H. Ez-Zahraouy

Using numerical simulations, we investigate the effects of the connectivity and topologies of network on the quality of transport between connected scale free networks. Hence, the flow as the electrical conductance between connected networks is calculated. It is found that the conductance distribution between networks follow a power law [Formula: see text] where [Formula: see text] is the exponent of the global Network of network, we show that the transport in the symmetric growing preferential attachment connection is more efficient than the symmetric static preferential attachment connection. Furthermore, the differences of transport and networks communications properties in the different cases are discussed.


Sign in / Sign up

Export Citation Format

Share Document