A Parallel Local Search Algorithm for Clustering Large Biological Networks

2017 ◽  
Vol 27 (03n04) ◽  
pp. 1750007
Author(s):  
Gaetano Coccimiglio ◽  
Salimur Choudhury

Clustering is an effective technique that can be used to analyze and extract useful information from large biological networks. Popular clustering solutions often require user input for several algorithm options that can seem very arbitrary without experimentation. These algorithms can provide good results in a reasonable time period but they are not above improvements. We present a local search based clustering algorithm free of such required input that can be used to improve the cluster quality of a set of given clusters taken from any existing algorithm or clusters produced via any arbitrary assignment. We implement this local search using a modern GPU based approach to allow for efficient runtime. The proposed algorithm shows promising results for improving the quality of clusters. With already high quality input clusters we can achieve cluster rating improvements upto to 33%.

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Carolina Lagos ◽  
Guillermo Guerrero ◽  
Enrique Cabrera ◽  
Stefanie Niklander ◽  
Franklin Johnson ◽  
...  

A novel matheuristic approach is presented and tested on a well-known optimisation problem, namely, capacitated facility location problem (CFLP). The algorithm combines local search and mathematical programming. While the local search algorithm is used to select a subset of promising facilities, mathematical programming strategies are used to solve the subproblem to optimality. Proposed local search is influenced by instance-specific information such as installation cost and the distance between customers and facilities. The algorithm is tested on large instances of the CFLP, where neither local search nor mathematical programming is able to find good quality solutions within acceptable computational times. Our approach is shown to be a very competitive alternative to solve large-scale instances for the CFLP.


2018 ◽  
Vol 69 (6) ◽  
pp. 849-863 ◽  
Author(s):  
Ruizhi Li ◽  
Shuli Hu ◽  
Peng Zhao ◽  
Yupeng Zhou ◽  
Minghao Yin

2006 ◽  
Vol 14 (2) ◽  
pp. 223-253 ◽  
Author(s):  
Frédéric Lardeux ◽  
Frédéric Saubion ◽  
Jin-Kao Hao

This paper presents GASAT, a hybrid algorithm for the satisfiability problem (SAT). The main feature of GASAT is that it includes a recombination stage based on a specific crossover and a tabu search stage. We have conducted experiments to evaluate the different components of GASAT and to compare its overall performance with state-of-the-art SAT algorithms. These experiments show that GASAT provides very competitive results.


Sign in / Sign up

Export Citation Format

Share Document