OPTIMAL DESIGN OF A MULTI-STATE WEIGHTED SERIES-PARALLEL SYSTEM USING PHYSICAL PROGRAMMING AND GENETIC ALGORITHMS

2011 ◽  
Vol 28 (04) ◽  
pp. 543-562 ◽  
Author(s):  
WEI LI ◽  
MING J. ZUO ◽  
RAMIN MOGHADDASS

In this paper, we report a study of the reliability optimal design of multi-state weighted series-parallel systems. Such a system and its components are capable of assuming a whole range of levels of performance, varying from perfect functioning to complete failure. There is a component utility corresponding to each component state. This system model is more general than the traditional binary series-parallel system model. The so-called component selection reliability optimal design problem which involves selection of components with known reliability characteristics and cost characteristics has been widely studied. However, the problem of determining system cost and system utility based on the relationships between component reliability, cost and utility has not been adequately addressed. We call it optimal component design reliability problem which has been studied in one of our former papers and continued in this paper for the multi-state weighted series-parallel systems. Furthermore, comparing to the traditional single-objective optimization model, the optimization model we proposed in this paper is a multi-objective optimization model which is used to maximize expected system performance utility and system reliability while minimizing investment system cost simultaneously. Genetic algorithm is used to solve the proposed physical programming based optimization model. An example is used to illustrate the flexibility and effectiveness of the proposed approach over the single-objective optimization method.

2018 ◽  
Vol 46 (2) ◽  
pp. 85-97 ◽  
Author(s):  
Hongxing Zhao ◽  
Ruichun He ◽  
Jiangsheng Su

Vehicle delay and stops at intersections are considered targets for optimizing signal timing for an isolated intersection to overcome the limitations of the linear combination and single objective optimization method. A multi-objective optimization model of a fixed-time signal control parameter of unsaturated intersections is proposed under the constraint of the saturation level of approach and signal time range. The signal cycle and green time length of each phase were considered decision variables, and a non-dominated sorting artificial bee colony (ABC) algorithm was used to solve the multi-objective optimization model. A typical intersection in Lanzhou City was used for the case study. Experimental results showed that a single-objective optimization method degrades other objectives when the optimized objective reaches an optimal value. Moreover, a reasonable balance of vehicle delay and stops must be achieved to flexibly adjust the signal cycle in a reasonable range. The convergence is better in the non-dominated sorting ABC algorithm than in non-dominated sorting genetic algorithm II, Webster timing, and weighted combination methods. The proposed algorithm can solve the Pareto front of a multi-objective problem, thereby improving the vehicle delay and stops simultaneously.


1991 ◽  
Vol 113 (4) ◽  
pp. 294-299 ◽  
Author(s):  
C. H. Tseng ◽  
K. Y. Kao ◽  
J. C. Yang

In this paper, an optimal design concept has been utilized to find the best designs for a complex and large-scale ocean thermal energy conversion (OTEC) plant. The OTEC power plant under this study is divided into three major subsystems consisting of power subsystem, seawater pipe subsystem, and containment subsystem. The design optimization model for the entire OTEC plant is integrated from these subsystems under the considerations of their own various design criteria and constraints. The mathematical formulations of this optimization model for the entire OTEC plant are described. The design variables, objective function, and constraints for a pilot plant under the constraints of the feasible technologies at this stage in Taiwan have been carefully examined and selected. The numerical optimization method called Sequential Quadratic Programming (SQP) is selected to obtain the optimum results. The main purpose of this paper is to demonstrate the design procedure with the optimization techniques for engineering and economics in the OTEC plant so that anyone else can build upon their models according to their needs.


2012 ◽  
Vol 61 (1) ◽  
pp. 115-123 ◽  
Author(s):  
Norio Takahashi ◽  
Shunsuke Nakazaki ◽  
Daisuke Miyagi ◽  
Naoki Uchida ◽  
Keiji Kawanaka ◽  
...  

3-D optimal design of laminated yoke of billet heater for rolling wire rod using ON/OFF method The optimization method using the ON/OFF sensitivity analysis has an advantage that an epoch-making construction of magnetic circuit may be obtained. Therefore, it is attractive for designers of magnetic devices. We have already developed the ON/OFF method for the optimization of a static magnetic field problem, and the effectiveness is verified by applying it to the optimization of magnetic recording heads. In this paper, the ON/OFF sensitivity method is extended to the optimization of the eddy current problem using the adjoint variable. The newly developed ON/OFF method is applied to the determination of the optimal topology of the yoke of the billet heater for rolling wire rod. As a result, the optimal shape of yoke, which we could not imagine beforehand can be obtained. It is shown that the local heating of the yoke was reduced without decreasing the heating efficiency.


Author(s):  
Myung-Jin Choi ◽  
Min-Geun Kim ◽  
Seonho Cho

We developed a shape-design optimization method for the thermo-elastoplasticity problems that are applicable to the welding or thermal deformation of hull structures. The point is to determine the shape-design parameters such that the deformed shape after welding fits very well to a desired design. The geometric parameters of curved surfaces are selected as the design parameters. The shell finite elements, forward finite difference sensitivity, modified method of feasible direction algorithm and a programming language ANSYS Parametric Design Language in the established code ANSYS are employed in the shape optimization. The objective function is the weighted summation of differences between the deformed and the target geometries. The proposed method is effective even though new design variables are added to the design space during the optimization process since the multiple steps of design optimization are used during the whole optimization process. To obtain the better optimal design, the weights are determined for the next design optimization, based on the previous optimal results. Numerical examples demonstrate that the localized severe deviations from the target design are effectively prevented in the optimal design.


2013 ◽  
Vol 756-759 ◽  
pp. 3466-3470
Author(s):  
Xu Min Song ◽  
Qi Lin

The trajcetory plan problem of spece reandezvous mission was studied in this paper using nolinear optimization method. The optimization model was built based on the Hills equations. And by analysis property of the design variables, a transform was put forward , which eliminated the equation and nonlinear constraints as well as decreaseing the problem dimensions. The optimization problem was solved using Adaptive Simulated Annealing (ASA) method, and the rendezvous trajectory was designed.The method was validated by simulation results.


Sign in / Sign up

Export Citation Format

Share Document