KLAUDER–PERELOMOV AND GAZEAU–KLAUDER COHERENT STATES FOR SOME SHAPE INVARIANT POTENTIALS

2002 ◽  
Vol 17 (26) ◽  
pp. 1701-1712 ◽  
Author(s):  
A. CHENAGHLOU ◽  
H. FAKHRI

Firstly, the solvability of some quantum models like Eckart and Rosen–Morse II are explained on the basis of the shape invariance theory. Then, two generalized types of the Klauder–Perelomov and Gazeau–Klauder coherent states are calculated for the models. By means of calculating the Mandel parameter, it is shown that the weight distribution function of the first type coherent states obeys the Poissonian and super-Poissonian statistics, however, the weight distribution function of the second type coherent states obeys the Poissonian and sub-Poissonian statistics.

2021 ◽  
pp. 147592172110339
Author(s):  
Guoqiang Liu ◽  
Binwen Wang ◽  
Li Wang ◽  
Yu Yang ◽  
Xiaguang Wang

Due to no requirement for direct interpretation of the guided wave signal, probability-based diagnostic imaging (PDI) algorithm is especially suitable for damage identification of complex composite structures. However, the weight distribution function of PDI algorithm is relatively inaccurate. It can reduce the damage localization accuracy. In order to improve the damage localization accuracy, an improved PDI algorithm is proposed. In the proposed algorithm, the weight distribution function is corrected by the acquired relative distances from defects to all actuator–sensor pairs and the reduction of the weight distribution areas. The validity of the proposed algorithm is assessed by identifying damages at different locations on a stiffened composite panel. The results show that the proposed algorithm can identify damage of a stiffened composite panel accurately.


2016 ◽  
Vol 25 (03) ◽  
pp. 1630009 ◽  
Author(s):  
S. Jalalzadeh ◽  
T. Rostami ◽  
P. V. Moniz

We review pedagogically some of the basic essentials regarding recent results intertwining boundary conditions, the algebra of constraints and hidden symmetries in quantum cosmology. They were extensively published in Refs. [S. Jalalzadeh, S. M. M. Rasouli and P. V. Moniz, Phys. Rev. D 90 (2014) 023541, S. Jalalzadeh and P. V. Moniz, Phys. Rev. D 89 (2014), S. Jalalzadeh, T. Rostami and P. V. Moniz, Eur. Phys. J. C 75 (2015) 38, arXiv:gr-qc/1412.6439 and T. Rostami, S. Jalalzadeh and P. V. Moniz, Phys. Rev. D 92 (2015) 023526, arXiv:gr-qc/1507.04212], where complete discussions and full details can be found. More concretely, in Refs. [S. Jalalzadeh, S. M. M. Rasouli and P. V. Moniz, Phys. Rev. D 90 (2014) 023541, S. Jalalzadeh and P. V. Moniz, Phys. Rev. D 89 (2014) and S. Jalalzadeh, T. Rostami and P. V. Moniz, Eur. Phys. J. C 75 (2015) 38, arXiv:gr-qc/1412.6439] it has been shown that specific boundary conditions can be related to the algebra of Dirac observables. Moreover, a process afterwards associated to the algebra of existent hidden symmetries, from which the boundary conditions can be selected, was introduced. On the other hand, in Ref. [T. Rostami, S. Jalalzadeh and P. V. Moniz, Phys. Rev. D 92 (2015) 023526, arXiv:gr-qc/1507.04212] it was subsequently argued that some factor ordering choices can be extracted from the hidden symmetries structure of the minisuperspace model.In Refs. [S. Jalalzadeh, S. M. M. Rasouli and P. V. Moniz, Phys. Rev. D 90 (2014) 023541, S. Jalalzadeh and P. V. Moniz, Phys. Rev. D 89 (2014), S. Jalalzadeh, T. Rostami and P. V. Moniz, Eur. Phys. J. C 75 (2015) 38, arXiv:gr-qc/1412.6439 and T. Rostami, S. Jalalzadeh and P. V. Moniz, Phys. Rev. D 92 (2015) 023526, arXiv:gr-qc/1507.04212], we proceeded gradually towards less simple models, ranging from a FLRW model with a perfect fluid [S. Jalalzadeh, S. M. M. Rasouli and P. V. Moniz, Phys. Rev. D 90 (2014) 023541] up to a conformal scalar field content [T. Rostami, S. Jalalzadeh and P. V. Moniz, Phys. Rev. D 92 (2015) 023526, arXiv:gr-qc/1507.04212]. We envisage that we could extend this framework towards a class of shape invariant potentials, which could include well known analytically solvable cosmological cases. Provided, we identify integrability in terms of the shape invariance conditions, we could eventually consider to import features of supersymmetric quantum mechanics towards quantum cosmology [P. V. Moniz, Quantum Cosmology-the Supersymmetric Perspective-Vol. 1: Fundamentals, Lecture Notes in Physics, Vol. 803 (Springer-Verlag, Berlin, 2010), P. V. Moniz, Quantum Cosmology-the Supersymmetric Perspective-Vol. 2: Advanced Topics, Lecture Notes in Physics, Vol. 804 (Springer, New York, 2010)], which we will also discuss in this review.Another point to emphasize is that by means of a hidden symmetry and then an algebra of Dirac observables, boundary conditions are extracted (and not ad hoc formulated) within a framework intrinsic to each model dynamics. Therefore, meeting DeWitt’s conjecture [B. S. DeWitt, Phys. Rev. 160 (1967) 1113] that “the constraints are everything” and nothing else but the constraints should be needed.


2019 ◽  
Vol 34 (14) ◽  
pp. 1950104 ◽  
Author(s):  
A. Dehghani ◽  
B. Mojaveri ◽  
S. Amiri Faseghandis

Using the parity deformed Heisenberg algebra (RDHA), we first establish associated coherent states (RDCSs) for a pseudo-harmonic oscillator (PHO) system that are defined as eigenstates of a deformed annihilation operator. Such states can be expressed as superposition of an even and odd Wigner cat states.[Formula: see text] The RDCSs minimize a corresponding uncertainty relation, and resolve an identity condition through a positive definite measure which is explicitly derived. We introduce a class of single-mode excited coherent states (PARDCS) of the PHO through “m” times application of deformed creation operators to RDCS. For the states thus constructed, we analyze their statistical properties such as squeezing and sub-Poissonian statistics as well as their uncertainty relations.


2005 ◽  
Vol 20 (16) ◽  
pp. 1251-1259
Author(s):  
ION I. COTĂESCU ◽  
ION I. COTĂESCU ◽  
NICOLINA POP

The main pairs of leader operators of the quantum models of relativistic rotating oscillators in arbitrary dimensions are derived. To this end one exploits the fact that these models generate Pöschl–Teller radial problems with remarkable properties of supersymmetry and shape invariance.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1853
Author(s):  
Christiane Quesne

We show that the method developed by Gangopadhyaya, Mallow, and their coworkers to deal with (translational) shape invariant potentials in supersymmetric quantum mechanics and consisting in replacing the shape invariance condition, which is a difference-differential equation, which, by an infinite set of partial differential equations, can be generalized to deformed shape invariant potentials in deformed supersymmetric quantum mechanics. The extended method is illustrated by several examples, corresponding both to ℏ-independent superpotentials and to a superpotential explicitly depending on ℏ.


Sign in / Sign up

Export Citation Format

Share Document