scholarly journals SURPRISES IN NONPERTURBATIVE DYNAMICS IN σ-MODEL AT FINITE DENSITY

2004 ◽  
Vol 19 (18) ◽  
pp. 1341-1356 ◽  
Author(s):  
V. P. GUSYNIN ◽  
V. A. MIRANSKY ◽  
I. A. SHOVKOVY

The linear SU (2)L× SU (2)R σ-model occupies a unique place in elementary particle physics and quantum field theory. It has been recently realized that when a chemical potential for hypercharge is added, it becomes a toy model for the description of the dynamics of the kaon condensate in high density QCD. We review recent results in nonperturbative dynamics obtained in the ungauged and gauged versions of this model.

Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 266
Author(s):  
Galina L. Klimchitskaya

This Special Issue presents a comprehensive picture of the Casimir effect as a multidisciplinary subject that plays an important role in diversified areas of physics ranging from quantum field theory, atomic physics and condensed matter physics to elementary particle physics, gravitation and cosmology [...]


Author(s):  
Arkady Plotnitsky

Taking as its point of departure the discovery of the Higgs boson, this article considers quantum theory, including quantum field theory, which predicted the Higgs boson, through the combined perspective of quantum information theory and the idea of technology, while also adopting a non-realist interpretation, in ‘the spirit of Copenhagen’, of quantum theory and quantum phenomena themselves. The article argues that the ‘events’ in question in fundamental physics, such as the discovery of the Higgs boson (a particularly complex and dramatic, but not essentially different, case), are made possible by the joint workings of three technologies: experimental technology, mathematical technology and, more recently, digital computer technology. The article will consider the role of and the relationships among these technologies, focusing on experimental and mathematical technologies, in quantum mechanics (QM), quantum field theory (QFT) and finite-dimensional quantum theory, with which quantum information theory has been primarily concerned thus far. It will do so, in part, by reassessing the history of quantum theory, beginning with Heisenberg's discovery of QM, in quantum-informational and technological terms. This history, the article argues, is defined by the discoveries of increasingly complex configurations of observed phenomena and the emergence of the increasingly complex mathematical formalism accounting for these phenomena, culminating in the standard model of elementary-particle physics, defining the current state of QFT.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 956
Author(s):  
Dafne Carolina Arias-Perdomo ◽  
Adriano Cherchiglia ◽  
Brigitte Hiller ◽  
Marcos Sampaio

Quantum Field Theory, as the keystone of particle physics, has offered great insights into deciphering the core of Nature. Despite its striking success, by adhering to local interactions, Quantum Field Theory suffers from the appearance of divergent quantities in intermediary steps of the calculation, which encompasses the need for some regularization/renormalization prescription. As an alternative to traditional methods, based on the analytic extension of space–time dimension, frameworks that stay in the physical dimension have emerged; Implicit Regularization is one among them. We briefly review the method, aiming to illustrate how Implicit Regularization complies with the BPHZ theorem, which implies that it respects unitarity and locality to arbitrary loop order. We also pedagogically discuss how the method complies with gauge symmetry using one- and two-loop examples in QED and QCD.


Physics Today ◽  
1987 ◽  
Vol 40 (12) ◽  
pp. 86-88
Author(s):  
B. de Wit ◽  
J. Smith ◽  
Lewis H. Ryder ◽  
Peter Becher ◽  
Manfred Böhm ◽  
...  

2015 ◽  
Vol 04 (01) ◽  
pp. 66-70
Author(s):  
Sheldon Lee Glashow

This is a personal, anecdotal and autobiographical account of my early endeavors in particle physics, emphasizing how they interwove with the conception and eventual acceptance of the quark hypothesis. I focus on the years from 1958, when my doctoral work at Harvard was completed, to 1970, when John Iliopoulos, Luciano Maiani and I introduced the GIM mechanism, thereby extending the electroweak model to include all known particles, and some that were not then known. I have not described the profound advances in quantum field theory and the many difficult and ingenious experimental efforts that undergird my story which is not intended to be an inclusive record of this exciting decade of my discipline. My tale begins almost two years before I met Murray and over five years before the invention of quarks.


2012 ◽  
Vol 27 (27) ◽  
pp. 1250154 ◽  
Author(s):  
HOURI ZIAEEPOUR

In this paper, we address some of the issues raised in the literature about the conflict between a large vacuum energy density, a priori predicted by quantum field theory, and the observed dark energy which must be the energy of vacuum or include it. We present a number of arguments against this claim and in favor of a null vacuum energy. They are based on the following arguments: A new definition for the vacuum in quantum field theory as a frame-independent coherent state; results from a detailed study of condensation of scalar fields in Friedmann–Lemaître–Robertson–Walker (FLRW) background performed in a previous work; and our present knowledge about the Standard Model of particle physics. One of the predictions of these arguments is the confinement of nonzero expectation value of Higgs field to scales roughly comparable with the width of electroweak gauge bosons or shorter. If the observation of Higgs by the LHC is confirmed, accumulation of relevant events and their energy dependence in near future should allow us to measure the spatial extend of the Higgs condensate.


Sign in / Sign up

Export Citation Format

Share Document