A MODEL OF QUANTUM OSCILLATOR WITH DISCRETE SPACE

2008 ◽  
Vol 23 (13) ◽  
pp. 943-952
Author(s):  
I. I. KACHURYK ◽  
A. U. KLIMYK

We construct a new model of the quantum oscillator, which is related to the discrete q-Hermite polynomials of the second type. The position and momentum operators in the model are appropriate operators of the Fock representation of a deformation of the Heisenberg algebra. These operators have a discrete non-degenerate spectra. These spectra are spread over the whole real line. Coordinate and momentum realizations of the model are constructed. Coherent states are explicitly given.

2005 ◽  
Vol 83 (9) ◽  
pp. 929-939
Author(s):  
N Boucerredj ◽  
N Mebarki ◽  
A Benslama

In the weak deformation (WD) approximation of the Weyl–Heisenberg algebra, the corresponding generalized coherent states and displacement operator are constructed. It is shown that those states, and contrary to the non-deformed Weyl-Heisenberg algebra, are not eigenstates of the annihilation operator. Moreover, and as an alternative to the Chaïchian et al. Q-deformed path integral approach (where Q is the deformation parameter), using the Bargmann Fock representation, we propose in the WD approximation, a general simple formalism. As an application, we calculate the propagator and the wave function of the harmonic oscillator.PACS Nos.: 03.65.Fd, 31.15.Kb


2016 ◽  
Vol 13 (03) ◽  
pp. 1650028 ◽  
Author(s):  
H. Fakhri ◽  
A. Hashemi

The symmetric [Formula: see text]-analysis is used to construct a type of minimum-uncertainty [Formula: see text]-coherent states in the Fock representation space of the symmetric [Formula: see text]-oscillator ∗-algebra with [Formula: see text]. Then, its corresponding [Formula: see text]-Hermite polynomials are derived by using the [Formula: see text]-Bargmann–Fock realization of the symmetric [Formula: see text]-oscillator algebra.


Author(s):  
H. Fakhri ◽  
M. Refahinozhat

The one-variable [Formula: see text]-coherent states attached to the [Formula: see text]-disc algebra are constructed and used to obtain the [Formula: see text]-Bargmann–Fock realization of its Fock representation. Then, this realization is used to obtain the [Formula: see text]-continuous Hermite polynomials as well as continuous and discrete [Formula: see text]-Hermite polynomials by using a pair of Hermitian canonical conjugate operators and two pairs of the non-Hermitian conjugate operators, respectively. Besides, we introduce a two-variable family of [Formula: see text]-coherent states attached to the Fock representation space of the [Formula: see text]-disc algebra and its opposite algebra and obtain their simultaneous [Formula: see text]-Bargmann–Fock realization. For an appropriate non-Hermitian operator, the latter realization is served to obtain the well-known little [Formula: see text]-Jacobi polynomials used in constructing the [Formula: see text]-disc polynomials.


1965 ◽  
Vol 33 (7) ◽  
pp. 537-544 ◽  
Author(s):  
P. Carruthers ◽  
M. M. Nieto

2021 ◽  
Author(s):  
Xiaoyan Zhang ◽  
Jisuo Wang ◽  
Lei Wang ◽  
Xiangguo Meng ◽  
Baolong Liang

Abstract Two new photon-modulated spin coherent states (SCSs) are introduced by operating the spin ladder operators J ± on the ordinary SCS in the Holstein-Primakoff realization and the nonclassicality is exhibited via their photon number distribution, second-order correlation function, photocount distribution and negativity of Wigner distribution. Analytical results show that the photocount distribution is a Bernoulli distribution and the Wigner functions are only associated with two-variable Hermite polynomials. Compared with the ordinary SCS, the photon-modulated SCSs exhibit more stronger nonclassicality in certain regions of the photon modulated number k and spin number j, which means that the nonclassicality can be enhanced by selecting suitable parameters.


2019 ◽  
Vol 34 (14) ◽  
pp. 1950104 ◽  
Author(s):  
A. Dehghani ◽  
B. Mojaveri ◽  
S. Amiri Faseghandis

Using the parity deformed Heisenberg algebra (RDHA), we first establish associated coherent states (RDCSs) for a pseudo-harmonic oscillator (PHO) system that are defined as eigenstates of a deformed annihilation operator. Such states can be expressed as superposition of an even and odd Wigner cat states.[Formula: see text] The RDCSs minimize a corresponding uncertainty relation, and resolve an identity condition through a positive definite measure which is explicitly derived. We introduce a class of single-mode excited coherent states (PARDCS) of the PHO through “m” times application of deformed creation operators to RDCS. For the states thus constructed, we analyze their statistical properties such as squeezing and sub-Poissonian statistics as well as their uncertainty relations.


2019 ◽  
Vol 17 (02) ◽  
pp. 2050021
Author(s):  
H. Fakhri ◽  
S. E. Mousavi Gharalari

We use the recursion relations of the continuous [Formula: see text]-Hermite polynomials and obtain the [Formula: see text]-difference realizations of the ladder operators of a [Formula: see text]-oscillator algebra in terms of the Askey–Wilson operator. For [Formula: see text]-deformed coherent states associated with a disc in the radius [Formula: see text], we obtain a compact form in [Formula: see text]-representation by using the generating function of the continuous [Formula: see text]-Hermite polynomials, too. In this way, we obtain a [Formula: see text]-difference realization for the [Formula: see text]-oscillator algebra in the finite interval [Formula: see text] as a [Formula: see text]-generalization of known differential formalism with respect to [Formula: see text] in the interval [Formula: see text] of the simple harmonic oscillator.


2013 ◽  
Vol 22 (02) ◽  
pp. 1350004 ◽  
Author(s):  
POURIA PEDRAM

We present the coherent states of the harmonic oscillator in the framework of the generalized (gravitational) uncertainty principle (GUP). This form of GUP is consistent with various theories of quantum gravity such as string theory, loop quantum gravity and black-hole physics and implies a minimal measurable length. Using a recently proposed formally self-adjoint representation, we find the GUP-corrected Hamiltonian as a generator of the generalized Heisenberg algebra. Then following Klauder's approach, we construct exact coherent states and obtain the corresponding normalization coefficients, weight functions and probability distributions. We find the entropy of the system and show that it decreases in the presence of the minimal length. These results could shed light on possible detectable Planck-scale effects within recent experimental tests.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Zouhaïr Mouayn

We construct a one-parameter family of coherent states of Barut-Girdrardello type performing a resolution of the identity of the classical Hardy space of complex-valued square integrable functions on the real line, whose Fourier transform is supported by the positive real semiaxis.


Sign in / Sign up

Export Citation Format

Share Document