scholarly journals ON TOPOLOGICAL CHARGED BRANEWORLD BLACK HOLES

2009 ◽  
Vol 24 (31) ◽  
pp. 2531-2538 ◽  
Author(s):  
AHMAD SHEYKHI ◽  
BIN WANG

We study a class of topological black hole solutions in RSII braneworld scenario in the presence of a localized Maxwell field on the brane. Such a black hole can carry two types of charge, one arising from the extra dimension, the tidal charge, and the other from a localized gauge field confined to the brane. We find that the localized charge on the brane modifies the bulk geometry and in particular the bulk Weyl tensor. The bulk geometry does not depend on different topologies of the horizons. We present the temperature and entropy expressions associated with the event horizon of the braneworld black hole and by using the first law of black hole thermodynamics we calculate the mass of the black hole.

2016 ◽  
Vol 25 (12) ◽  
pp. 1644015
Author(s):  
Roberto Emparan ◽  
Marina Martínez

The fusion of two black holes — a signature phenomenon of General Relativity — is usually regarded as a process so complex that nothing short of a supercomputer simulation can accurately capture it. In this essay, we explain how the event horizon of the merger can be found in an exact analytic way in the limit where one of the black holes is much smaller than the other. Remarkably, the ideas and techniques involved are elementary: the equivalence principle, null geodesics in the Schwarzschild solution, and the notion of event horizon itself. With these, one can identify features such as the line of caustics at which light rays enter the horizon, and find indications of universal critical behavior when the two black holes touch.


2001 ◽  
Vol 10 (05) ◽  
pp. 691-709 ◽  
Author(s):  
STEPHEN FAIRHURST ◽  
BADRI KRISHNAN

We present new solutions to the Einstein–Maxwell equations representing a class of charged distorted black holes. These solutions are static-axisymmetric and are generalizations of the distorted black hole solutions studied by Geroch and Hartle. Physically, they represent a charged black hole distorted by external matter fields. We discuss the zeroth and first law for these black holes. The first law is proved in two different forms, one motivated by the isolated horizon framework and the other using normalizations at infinity.


2017 ◽  
Vol 26 (13) ◽  
pp. 1750151 ◽  
Author(s):  
Hao Xu ◽  
Yuan Sun ◽  
Liu Zhao

The extended phase-space thermodynamics and heat engines for static spherically symmetric black hole solutions of four-dimensional conformal gravity are studied in detail. It is argued that the equation of states (EOS) for such black holes is always branched, any continuous thermodynamical process cannot drive the system from one branch of the EOS into another branch. Meanwhile, the thermodynamical volume is bounded from above, making the black holes always super-entropic in one branch and may also be super-entropic in another branch in certain range of the temperature. The Carnot and Stirling heat engines associated to such black holes are shown to be distinct from each other. For rectangular heat engines, the efficiency always approaches zero when the rectangle becomes extremely narrow, and given the highest and lowest working temperatures fixed, there is always a maximum for the efficiency of such engines.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Guillaume BEAUJARD ◽  
Swapnamay Mondal ◽  
Boris Pioline

The Coulomb Branch Formula conjecturally expresses the refined Witten index for N=4 Quiver Quantum Mechanics as a sum over multi-centered collinear black hole solutions, weighted by so-called `single-centered' or `pure-Higgs' indices, and suitably modified when the quiver has oriented cycles. On the other hand, localization expresses the same index as an integral over the complexified Cartan torus and auxiliary fields, which by Stokes' theorem leads to the famous Jeffrey-Kirwan residue formula. Here, by evaluating the same integral using steepest descent methods, we show the index is in fact given by a sum over deformed multi-centered collinear solutions, which encompasses both regular and scaling collinear solutions. As a result, we confirm the Coulomb Branch Formula for Abelian quivers in the presence of oriented cycles, and identify the origin of the pure-Higgs and minimal modification terms as coming from collinear scaling solutions. For cyclic Abelian quivers, we observe that part of the scaling contributions reproduce the stacky invariants for trivial stability, a mathematically well-defined notion whose physics significance had remained obscure.


2020 ◽  
Author(s):  
Deep Bhattacharjee

The existence of the “Naked Singularity" has been shown taking the advantage of the Ring Singularity of the Kerr Black Hole and thereby making the way to manipulate the mathematics by taking the larger root of Δ as zero and thereby vanishing the ergosphere and event horizon making the way for the naked ring singularity which can be easily connected via a cylindrical wormhole and as ‘a wormhole is a black hole without an event horizon’ therefore, this cylindrical connection paved the way for the Einstein-Rosen Bridge allowing particles or null rays to travel from one universe to another ending up in a future directed Cauchy horizon while changing constantly from spatial to temporal and again spatial paving the entrance to another Kerr Black hole (which would act as a white hole) in the other universes.


2019 ◽  
Vol 79 (11) ◽  
Author(s):  
Metin Gürses ◽  
Yaghoub Heydarzade ◽  
Çetin Şentürk

AbstractWe study some physical properties of black holes in Null Aether Theory (NAT) – a vector-tensor theory of gravity. We first review the black hole solutions in NAT and then derive the first law of black hole thermodynamics. The temperature of the black holes depends on both the mass and the NAT “charge” of the black holes. The extreme cases where the temperature vanishes resemble the extreme Reissner–Nordström black holes. We also discuss the contribution of the NAT charge to the geodesics of massive and massless particles around the NAT black holes.


2012 ◽  
Vol 27 (12) ◽  
pp. 1250068 ◽  
Author(s):  
IBRAR HUSSAIN

It is shown that in the background of the Ayòn–Beato–Garcìa–Bronnikov (ABGB) black hole, the center-of-mass (CM) energy of collision for two charged particles falling freely from rest at infinity is infinite at the event horizon if one of the colliding particle has critical charge and the other one has any different value of the charge. For the Einstein–Maxwell-dilaton–axion (EMDA) black hole it is found that the CM energy of collision for two uncharged particles falling freely from rest at infinity remains finite. In the case of Bañados–Teitelboim–Zanelli (BTZ) black hole the CM energy of collision for two uncharged particles falling freely from rest at infinity is infinite at the event horizon if there is no rotation. It is observed that in the case of the extremal rotating BTZ black hole, at the event horizon this CM energy remains finite.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Andres Anabalon ◽  
Dumitru Astefanesei ◽  
Antonio Gallerati ◽  
Mario Trigiante

Abstract In this article we study a family of four-dimensional, $$ \mathcal{N} $$ N = 2 supergravity theories that interpolates between all the single dilaton truncations of the SO(8) gauged $$ \mathcal{N} $$ N = 8 supergravity. In this infinitely many theories characterized by two real numbers — the interpolation parameter and the dyonic “angle” of the gauging — we construct non-extremal electrically or magnetically charged black hole solutions and their supersymmetric limits. All the supersymmetric black holes have non-singular horizons with spherical, hyperbolic or planar topology. Some of these supersymmetric and non-extremal black holes are new examples in the $$ \mathcal{N} $$ N = 8 theory that do not belong to the STU model. We compute the asymptotic charges, thermodynamics and boundary conditions of these black holes and show that all of them, except one, introduce a triple trace deformation in the dual theory.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Luca V. Iliesiu ◽  
Gustavo J. Turiaci

Abstract An important open question in black hole thermodynamics is about the existence of a “mass gap” between an extremal black hole and the lightest near-extremal state within a sector of fixed charge. In this paper, we reliably compute the partition function of Reissner-Nordström near-extremal black holes at temperature scales comparable to the conjectured gap. We find that the density of states at fixed charge does not exhibit a gap; rather, at the expected gap energy scale, we see a continuum of states. We compute the partition function in the canonical and grand canonical ensembles, keeping track of all the fields appearing through a dimensional reduction on S2 in the near-horizon region. Our calculation shows that the relevant degrees of freedom at low temperatures are those of 2d Jackiw-Teitelboim gravity coupled to the electromagnetic U(1) gauge field and to an SO(3) gauge field generated by the dimensional reduction.


2018 ◽  
Vol 27 (11) ◽  
pp. 1843009 ◽  
Author(s):  
Carlos A. R. Herdeiro ◽  
Eugen Radu

We obtain spinning boson star solutions and hairy black holes with synchronized hair in the Einstein–Klein–Gordon model, wherein the scalar field is massive, complex and with a nonminimal coupling to the Ricci scalar. The existence of these hairy black holes in this model provides yet another manifestation of the universality of the synchronization mechanism to endow spinning black holes with hair. We study the variation of the physical properties of the boson stars and hairy black holes with the coupling parameter between the scalar field and the curvature, showing that they are, qualitatively, identical to those in the minimally coupled case. By discussing the conformal transformation to the Einstein frame, we argue that the solutions herein provide new rotating boson star and hairy black hole solutions in the minimally coupled theory, with a particular potential, and that no spherically symmetric hairy black hole solutions exist in the nonminimally coupled theory, under a condition of conformal regularity.


Sign in / Sign up

Export Citation Format

Share Document