NON-ZERO Ue3 AND TeV-LEPTOGENESIS THROUGH A4 EFFECTIVE OPERATOR

2010 ◽  
Vol 25 (11n12) ◽  
pp. 1014-1025 ◽  
Author(s):  
CHIAN-SHU CHEN

We investigate the possibility of thermal leptogenesis under the framework of radiative seesaw model with A4×Z2×Z4 leptonic flavour symmetry that leads to the tribimaximal mixing in neutrino sector. A five-dimensional effective Yukawa interaction with cutoff scale Λ which provides the deviations from tribimaximal mixing. Both A4 × Z4 and CP symmetries are spontaneously broken after the invented scalars generating VEVs. We consider the low-energy neutrino mixing angles to constrain the parameters in our model within three possible light neutrino spectrum in 1σ. We study the flavored effects on thermal leptogenesis in each scenario.

2009 ◽  
Vol 24 (18n19) ◽  
pp. 3660-3667
Author(s):  
Y. H. AHN ◽  
SIN KYU KANG ◽  
C. S. KIM ◽  
T. PHONG NGUYEN

We consider an exact µ-τ reflection symmetry in neutrino sector realized at the GUT scale in the context of the seesaw model with and without supersymmetry. It is shown that the renormalization group (RG) evolution from the GUT scale to the seesaw scale gives rise to breaking of the µ-τ symmetry which is essential to achieve a successful leptogenesis. We show that CP violation responsible for the generation of baryon asymmetry of our universe can be directly linked with CP violation measurable through neutrino oscillation as well as neutrino mixing angles θ12 and θ13.


2017 ◽  
Vol 32 (16) ◽  
pp. 1742004
Author(s):  
Jue Zhang ◽  
Shun Zhou

In light of the latest neutrino data, we revisit a minimal seesaw model with the Frampton–Glashow–Yanagida ansatz. Renormalization-group running effects on neutrino masses and flavor mixing parameters are discussed and found to essentially have no impact on testing such a minimal scenario in low-energy neutrino experiments. However, since renormalization-group running can modify neutrino mixing parameters at high energies, it does affect the leptogenesis mechanism, which is responsible for the observed matter–antimatter asymmetry in our Universe. Furthermore, to ease the conflict between the naturalness argument and the successful leptogenesis, a special regime for resonant leptogenesis is also emphasized.


2005 ◽  
Vol 631 (1-2) ◽  
pp. 32-41 ◽  
Author(s):  
John Ellis ◽  
Andi Hektor ◽  
Mario Kadastik ◽  
Kristjan Kannike ◽  
Martti Raidal

2016 ◽  
Vol 31 (17) ◽  
pp. 1650095 ◽  
Author(s):  
Gauhar Abbas ◽  
Mehran Zahiri Abyaneh ◽  
Aritra Biswas ◽  
Saurabh Gupta ◽  
Monalisa Patra ◽  
...  

The origin of small mixing among the quarks and a large mixing among the neutrinos has been an open question in particle physics. In order to answer this question, we postulate general relations among the quarks and the leptonic mixing angles at a high scale, which could be the scale of Grand Unified Theories. The central idea of these relations is that the quark and the leptonic mixing angles can be unified at some high scale either due to some quark–lepton symmetry or some other underlying mechanism and as a consequence, the mixing angles of the leptonic sector are proportional to that of the quark sector. We investigate the phenomenology of the possible relations where the leptonic mixing angles are proportional to the quark mixing angles at the unification scale by taking into account the latest experimental constraints from the neutrino sector. These relations are able to explain the pattern of leptonic mixing at the low scale and thereby hint that these relations could be possible signatures of a quark–lepton symmetry or some other underlying quark–lepton mixing unification mechanism at some high scale linked to Grand Unified Theories.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
V. V. Vien

AbstractWe propose a non-renormalizable $$B-L$$ B - L model with $$S_{3}{\times Z_4\times Z_2}$$ S 3 × Z 4 × Z 2 symmetry which successfully accommodates the current active–sterile neutrino mixing in $$3+1$$ 3 + 1 scheme. The $$S_3$$ S 3 flavor symmetry is supplemented by $$Z_4\otimes Z_2$$ Z 4 ⊗ Z 2 symmetry to consolidate the Yukawa interaction of the model. The presence of $$S_3\otimes Z_4\otimes Z_2$$ S 3 ⊗ Z 4 ⊗ Z 2 flavour symmetry plays an important role in generating the desired structure of the neutrino mass matrix. The model can reproduce the recent observed active-neutrino neutrino oscillation data for normal ordering in which two sterile–active mixing angles $$\theta _{14, 24}$$ θ 14 , 24 get the best-fit values and the obtained values of $$\theta _{34}, \delta _{14}, \delta _{14}$$ θ 34 , δ 14 , δ 14 , the sum of neutrino mass and the effective neutrino masses are within their currently allowed ranges.


2016 ◽  
Vol 31 (09) ◽  
pp. 1650039 ◽  
Author(s):  
V. V. Vien

We study a neutrino mass model based on [Formula: see text] flavor symmetry which accommodates lepton mass, mixing with nonzero [Formula: see text] and CP violation phase. The spontaneous symmetry breaking in the model is imposed to obtain the realistic neutrino mass and mixing pattern at the tree-level with renormalizable interactions. Indeed, the neutrinos get small masses from one [Formula: see text] doublet and two [Formula: see text] singlets in which one being in [Formula: see text] and the two others in [Formula: see text] under [Formula: see text] with both the breakings [Formula: see text] and [Formula: see text] are taken place in charged lepton sector and [Formula: see text] in neutrino sector. The model also gives a remarkable prediction of Dirac CP violation [Formula: see text] or [Formula: see text] in both the normal and inverted spectrum which is still missing in the neutrino mixing matrix. The relation between lepton mixing angles is also represented.


2020 ◽  
Vol 29 (04) ◽  
pp. 2050022
Author(s):  
M. M. Saez ◽  
O. Civitarese ◽  
M. E. Mosquera

A possible mechanism for the formation of heavy-mass elements in supernovae is the rapid neutron-capture-mechanism ([Formula: see text]-process). It depends upon the electron-fraction [Formula: see text], a quantity which is determined by beta-decay-rates. In this paper, we focus on the calculation of electroweak decay-rates in presence of massive neutrinos. The resulting expressions are then used to calculate nuclear reactions entering the rapid-neutron capture. We fix the astrophysical parameters to the case of a core-collapse supernova. The neutrino sector includes a mass scheme and mixing angles for active neutrinos, and also by including the mixing between active and sterile neutrinos. The results of the calculations show that the predicted abundances of heavy-mass nuclei are indeed affected by the neutrino mixing.


2007 ◽  
Vol 2007 (04) ◽  
pp. 064-064 ◽  
Author(s):  
J. Alberto Casas ◽  
Alejandro Ibarra ◽  
Fernando Jiménez-Alburquerque

Sign in / Sign up

Export Citation Format

Share Document