scholarly journals HIGHER DIMENSIONAL COSMOLOGY: RELATIONS AMONG THE RADII OF TWO HOMOGENEOUS SPACES

2011 ◽  
Vol 26 (11) ◽  
pp. 805-814 ◽  
Author(s):  
E. A. LEÓN ◽  
R. NÚÑEZ-LÓPEZ ◽  
A. LIPOVKA ◽  
J. A. NIETO

We study a cosmological model in (1+D+d) dimensions where D dimensions are associated with the usual Friedmann–Robertson–Walker type metric with radio a(t) and d dimensions corresponds to an additional homogeneous space with radio b(t). We make a general analysis of the field equations and then we obtain solutions involving the two cosmological radii, a(t) and b(t). The particular case D = 3, d = 1 is studied in some detail.

2014 ◽  
Vol 92 (4) ◽  
pp. 289-294 ◽  
Author(s):  
R. Chaubey

The Einstein–Maxwell dilaton field equations are considered for four-dimensional anisotropic Bianchi models. The general solutions have been obtained and their properties have been discussed. The exact solutions to the corresponding field equations are obtained for two different physical viable cosmologies. The cosmological parameters have been discussed in detail and it is also shown that the solutions tend asymptotically to isotropic Friedmann–Robertson–Walker cosmological model.


Author(s):  
PETER SPACEK

AbstractIn this article we construct Laurent polynomial Landau–Ginzburg models for cominuscule homogeneous spaces. These Laurent polynomial potentials are defined on a particular algebraic torus inside the Lie-theoretic mirror model constructed for arbitrary homogeneous spaces in [Rie08]. The Laurent polynomial takes a similar shape to the one given in [Giv96] for projective complete intersections, i.e., it is the sum of the toric coordinates plus a quantum term. We also give a general enumeration method for the summands in the quantum term of the potential in terms of the quiver introduced in [CMP08], associated to the Langlands dual homogeneous space. This enumeration method generalizes the use of Young diagrams for Grassmannians and Lagrangian Grassmannians and can be defined type-independently. The obtained Laurent polynomials coincide with the results obtained so far in [PRW16] and [PR13] for quadrics and Lagrangian Grassmannians. We also obtain new Laurent polynomial Landau–Ginzburg models for orthogonal Grassmannians, the Cayley plane and the Freudenthal variety.


2016 ◽  
Vol 13 (05) ◽  
pp. 1650058 ◽  
Author(s):  
Gyan Prakash Singh ◽  
Binaya Kumar Bishi ◽  
Pradyumn Kumar Sahoo

In this paper, we have studied the Bianchi type-III cosmological model in the presence of cosmological constant in the context of [Formula: see text] modified theory of gravity. Here, we have discussed two classes of [Formula: see text] gravity, i.e. [Formula: see text] and [Formula: see text]. In both classes, the modified field equations are solved by the relation expansion scalar [Formula: see text] that is proportional to shear scalar [Formula: see text] which gives [Formula: see text], where [Formula: see text] and [Formula: see text] are metric potentials. Also we have discussed some physical and kinematical properties of the models.


2005 ◽  
Vol 16 (09) ◽  
pp. 941-955 ◽  
Author(s):  
ALI BAKLOUTI ◽  
FATMA KHLIF

Let G be a connected, simply connected nilpotent Lie group, H and K be connected subgroups of G. We show in this paper that the action of K on X = G/H is proper if and only if the triple (G,H,K) has the compact intersection property in both cases where G is at most three-step and where G is special, extending then earlier cases. The result is also proved for exponential homogeneous space on which acts a maximal subgroup.


2019 ◽  
Vol 97 (7) ◽  
pp. 752-760 ◽  
Author(s):  
M. Farasat Shamir ◽  
Adnan Malik

The aim of this paper is to investigate the field equations of modified [Formula: see text] theory of gravity, where R and [Formula: see text] represent the Ricci scalar and scalar potential, respectively. We consider the Friedmann–Robertson–Walker space–time for finding some exact solutions by using different values of equation of state parameter. In this regard, different possibilities of the exact solutions have been discussed for dust universe, radiation universe, ultra-relativistic universe, sub-relativistic universe, stiff universe, and dark energy universe. Mainly power law and exponential forms of the scale factor are chosen for the analysis.


2006 ◽  
Vol 15 (04) ◽  
pp. 477-483 ◽  
Author(s):  
IHSAN YILMAZ ◽  
ATTILA ALTAY YAVUZ

In this article, we study higher-dimensional cosmological models with quark–gluon plasma in the context of general relativity. For this purpose, we consider quark–gluon plasma as a perfect fluid in the higher-dimensional universes. After solving Einstein's field equations, we have analyzed this matter for the different types of universes in the higher- and four-dimensional universes. Also, we have discussed the features of obtained solutions.


2016 ◽  
Vol 27 (10) ◽  
pp. 1650085
Author(s):  
A. Baklouti ◽  
N. Elaloui ◽  
I. Kedim

A local rigidity theorem was proved by Selberg and Weil for Riemannian symmetric spaces and generalized by Kobayashi for a non-Riemannian homogeneous space [Formula: see text], determining explicitly which homogeneous spaces [Formula: see text] allow nontrivial continuous deformations of co-compact discontinuous groups. When [Formula: see text] is assumed to be exponential solvable and [Formula: see text] is a maximal subgroup, an analog of such a theorem states that the local rigidity holds if and only if [Formula: see text] is isomorphic to the group Aff([Formula: see text]) of affine transformations of the real line (cf. [L. Abdelmoula, A. Baklouti and I. Kédim, The Selberg–Weil–Kobayashi rigidity theorem for exponential Lie groups, Int. Math. Res. Not. 17 (2012) 4062–4084.]). The present paper deals with the more general context, when [Formula: see text] is a connected solvable Lie group and [Formula: see text] a maximal nonnormal subgroup of [Formula: see text]. We prove that any discontinuous group [Formula: see text] for a homogeneous space [Formula: see text] is abelian and at most of rank 2. Then we discuss an analog of the Selberg–Weil–Kobayashi local rigidity theorem in this solvable setting. In contrast to the semi-simple setting, the [Formula: see text]-action on [Formula: see text] is not always effective, and thus the space of group theoretic deformations (formal deformations) [Formula: see text] could be larger than geometric deformation spaces. We determine [Formula: see text] and also its quotient modulo uneffective parts when the rank [Formula: see text]. Unlike the context of exponential solvable case, we prove the existence of formal colored discontinuous groups. That is, the parameter space admits a mixture of locally rigid and formally nonrigid deformations.


Author(s):  
Vladimir F. Molchanov ◽  
Svetlana V. Tsykina

The basic notion of the Berezin quantization on a manifold M is a correspondence which to an operator A from a class assigns the pair of functions F and F^♮ defined on M. These functions are called covariant and contravariant symbols of A. We are interested in homogeneous space M=G/H and classes of operators related to the representation theory. The most algebraic version of quantization — we call it the polynomial quantization — is obtained when operators belong to the algebra of operators corresponding in a representation T of G to elements X of the universal enveloping algebra Env g of the Lie algebra g of G. In this case symbols turn out to be polynomials on the Lie algebra g. In this paper we offer a new theme in the Berezin quantization on G/H: as an initial class of operators we take operators corresponding to elements of the group G itself in a representation T of this group. In the paper we consider two examples, here homogeneous spaces are para-Hermitian spaces of rank 1 and 2: a) G=SL(2;R), H — the subgroup of diagonal matrices, G/H — a hyperboloid of one sheet in R^3; b) G — the pseudoorthogonal group SO_0 (p; q), the subgroup H covers with finite multiplicity the group SO_0 (p-1,q -1)×SO_0 (1;1); the space G/H (a pseudo-Grassmann manifold) is an orbit in the Lie algebra g of the group G.


Sign in / Sign up

Export Citation Format

Share Document