scholarly journals POSITIVITY VIOLATIONS IN QCD

2013 ◽  
Vol 28 (38) ◽  
pp. 1330035 ◽  
Author(s):  
JOHN M. CORNWALL

Both lattice simulations and theoretical studies show that the spectral function of the gluon propagator of QCD (in various gauges, as well as for the gauge-invariant Pinch Technique, or PT, propagator) is not nonnegative everywhere, although it should be if it has a physical interpretation as in QED. Theory says moreover that the non-positive spectral function of the Landau-gauge or of the PT gluon propagator is further constrained to obey a superconvergence relation (the integral of the spectral function vanishes). We review the theoretical and lattice evidence for violation of positivity as well as various interpretations of this violation, and consider methods for checking superconvergence on the lattice (so far undone). The most common interpretation is that positivity violation implies confinement of gluons, so the gluon propagator does not describe processes with physical gluons. Another more direct and gauge-invariant interpretation arises from the PT: Asymptotic freedom alone demands non-positivity and superconvergence.

2018 ◽  
Vol 5 (6) ◽  
Author(s):  
Anton K. Cyrol ◽  
Jan M. Pawlowski ◽  
Alexander Rothkopf ◽  
Nicolas Wink

We reconstruct the gluon spectral function in Landau gauge QCD from numerical data for the gluon propagator. The reconstruction relies on two novel ingredients: Firstly we derive analytically the low frequency asymptotics of the spectral function. Secondly we construct a functional basis from a careful consideration of the analytic properties of the gluon propagator in Landau gauge. This allows us to reliably capture the non-perturbative regime of the gluon spectrum. We also compare different reconstruction methods and discuss the respective systematic errors.


2012 ◽  
Vol 27 (09) ◽  
pp. 1250050 ◽  
Author(s):  
V. G. BORNYAKOV ◽  
V. K. MITRJUSHKIN

Landau gauge gluon propagators are studied numerically in the SU (3) gluodynamics as well as in the full QCD with the number of flavors nF = 2 using efficient gauge fixing technique. We compare these propagators at temperatures very close to the transition point in two phases: confinement and deconfinement. The electric mass mE has been determined from the momentum space longitudinal gluon propagator. Gribov copy effects are found to be rather strong in the gluodynamics, while in the full QCD case they are weak ("Gribov noise"). Also we analyze finite volume dependence of the transverse and longitudinal propagators.


1993 ◽  
Vol 08 (08) ◽  
pp. 739-748
Author(s):  
H. NAKKAGAWA ◽  
A. NIÉGAWA ◽  
B. PIRE

The damping rate of a heavy muon/quark in a hot QED/QCD plasma is calculated in the Landau gauge to the effective one-loop order in the resummed perturbation theory of Braaten and Pisarski. For both a muon/quark at rest and in an energetic case we obtain to leading order the same result as in the Coulomb gauge. Resummation of hard-thermal loop corrections to the photon/gluon propagator is of key importance for this gauge independence.


The procedure devised by Dirac for the canonical quantization of systems described by degenerate lagrangians is used to construct the hamiltonian for molecules interacting with the electromagnetic field. The hamiltonian obtained is expressed in terms of the gauge invariant field strengths and the electric and magnetic multipole moments of the molecules. The Coulomb gauge is introduced but other gauge conditions could be used. Finally, a physical interpretation of the unitary transformation that may be used to generate the multipole hamiltonian is given.


1994 ◽  
Vol 09 (21) ◽  
pp. 3799-3819 ◽  
Author(s):  
KAZUHIKO NISHIJIMA

It is proved without recourse to any approximation that quarks and gluons are confined simultaneously when the anomalous dimension of the gluon field is negative in the weak coupling limit. The proof is based on the BRS invariance of quantum chromodynamics and the Oehme–Zimmermann superconvergence relation for the spectral function of the gluon field.


Sign in / Sign up

Export Citation Format

Share Document