Quantum gravity and renormalization

2015 ◽  
Vol 30 (03n04) ◽  
pp. 1540004 ◽  
Author(s):  
Damiano Anselmi

The properties of quantum gravity are reviewed from the point of view of renormalization. Various attempts to overcome the problem of non-renormalizability are presented, and the reasons why most of them fail for quantum gravity are discussed. Interesting possibilities come from relaxing the locality assumption, which also can inspire the investigation of a largely unexplored sector of quantum field theory. Another possibility is to work with infinitely many independent couplings, and search for physical quantities that only depend on a finite subset of them. In this spirit, it is useful to organize the classical action of quantum gravity, determined by renormalization, in a convenient way. Taking advantage of perturbative local field redefinitions, we write the action as the sum of the Hilbert term, the cosmological term, a peculiar scalar that is important only in higher dimensions, plus invariants constructed with at least three Weyl tensors. We show that the FRLW configurations, and many other locally conformally flat metrics, are exact solutions of the field equations in arbitrary dimensions d>3. If the metric is expanded around such configurations the quadratic part of the action is free of higher-time derivatives. Other well-known metrics, such as those of black holes, are instead affected in nontrivial ways by the classical corrections of quantum origin.

2019 ◽  
Author(s):  
Damiano Anselmi

The correspondence principle made of unitarity, locality and renormalizability has been very successful in quantum field theory. Among the other things, it helped us build the standard model. However, it also showed important limitations. For example, it failed to restrict the gauge group and the matter sector in a powerful way. After discussing its effectiveness, we upgrade it to make room for quantum gravity. The unitarity assumption is better understood, since it allows for the presence of physical particles as well as fake particles (fakeons). The locality assumption is applied to an interim classical action, since the true classical action is nonlocal and emerges from the quantization and a later process of classicization. The renormalizability assumption is refined to single out the special role of the gauge couplings. We show that the upgraded principle leads to an essentially unique theory of quantum gravity. In particular, in four dimensions, a fakeon of spin 2, together with a scalar field, is able to make the theory renormalizable while preserving unitarity. We offer an overview of quantum field theories of particles and fakeons in various dimensions, with and without gravity.


2021 ◽  
pp. 2150197
Author(s):  
Brian Slovick

Within the background field formalism of quantum gravity, I show that if the quantum fluctuations are limited to diffeomorphic gauge transformations rather than the physical degrees of freedom, as in conventional quantum field theory, all the quantum corrections vanish on shell and the effective action is equivalent to the classical action. In principle, the resulting theory is finite and unitary, and requires no renormalization. I also show that this is the unique parameterization that renders the path integral independent of the on-shell condition for the background field, a form of background independence. Thus, a connection is established between background independence and renormalizability and unitarity.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jing Li ◽  
Shuxiang Feng ◽  
Peibiao Zhao

AbstractIn this paper, we establish a finiteness theorem for $L^{p}$ L p harmonic 1-forms on a locally conformally flat Riemannian manifold under the assumptions on the Schrödinger operators involving the squared norm of the traceless Ricci form. This result can be regarded as a generalization of Han’s result on $L^{2}$ L 2 harmonic 1-forms.


2000 ◽  
Vol 09 (06) ◽  
pp. 669-686 ◽  
Author(s):  
MARÍA E. ANGULO ◽  
GUILLERMO A. MENA MARUGÁN

Linearly polarized cylindrical waves in four-dimensional vacuum gravity are mathematically equivalent to rotationally symmetric gravity coupled to a Maxwell (or Klein–Gordon) field in three dimensions. The quantization of this latter system was performed by Ashtekar and Pierri in a recent work. Employing that quantization, we obtain here a complete quantum theory which describes the four-dimensional geometry of the Einstein–Rosen waves. In particular, we construct regularized operators to represent the metric. It is shown that the results achieved by Ashtekar about the existence of important quantum gravity effects in the Einstein–Maxwell system at large distances from the symmetry axis continue to be valid from a four-dimensional point of view. The only significant difference is that, in order to admit an approximate classical description in the asymptotic region, states that are coherent in the Maxwell field need not contain a large number of photons anymore. We also analyze the metric fluctuations on the symmetry axis and argue that they are generally relevant for all of the coherent states.


2003 ◽  
Vol 14 (01) ◽  
pp. 41-48 ◽  
Author(s):  
G. ZET ◽  
V. MANTA ◽  
S. BABETI

A deSitter gauge theory of gravitation over a spherical symmetric Minkowski space–time is developed. The "passive" point of view is adapted, i.e., the space–time coordinates are not affected by group transformations; only the fields change under the action of the symmetry group. A particular ansatz for the gauge fields is chosen and the components of the strength tensor are computed. An analytical solution of Schwarzschild–deSitter type is obtained in the case of null torsion. It is concluded that the deSitter group can be considered as a "passive" gauge symmetry for gravitation. Because of their complexity, all the calculations, inclusive of the integration of the field equations, are performed using an analytical program conceived in GRTensorII for MapleV. The program allows one to compute (without using a metric) the strength tensor [Formula: see text], Riemann tensor [Formula: see text], Ricci tensor [Formula: see text], curvature scalar [Formula: see text], field equations, and the integration of these equations.


2012 ◽  
Vol 27 (07) ◽  
pp. 1250032 ◽  
Author(s):  
FRANCESCO CIANFRANI ◽  
GIOVANNI MONTANI

This papers offers a critical discussion on the procedure by which Loop Quantum Cosmology (LQC) is constructed from the full Loop Quantum Gravity (LQG) theory. Revising recent issues in preserving SU(2) symmetry when quantizing the isotropic Universe, we trace a new perspective in approaching the cosmological problem within quantum geometry. The cosmological sector of LQG is reviewed and a critical point of view on LQC is presented. It is outlined how a polymer-like scale for quantum cosmology can be predicted from a proper fundamental graph underlying the homogeneous and isotropic continuous picture. However, such a minimum scale does not coincide with the choice made in LQC. Finally, the perspectives towards a consistent cosmological LQG model based on such a graph structure are discussed.


Sign in / Sign up

Export Citation Format

Share Document