scholarly journals Odderon and pomeron as fractal dimension in pp and p̄p total cross-sections

2016 ◽  
Vol 31 (10) ◽  
pp. 1650066 ◽  
Author(s):  
F. S. Borcsik ◽  
S. D. Campos

In this paper, one presents a naive parametrization to [Formula: see text] and [Formula: see text] total cross-sections. The main goal of this parametrization is to study the possible fractal structure present in the total cross-section. The result of the fitting procedure shows two different fractal dimensions: a negative (low-energies) and a positive (high-energies). The negative fractal dimension represents the emptiness of the total cross-section structure and the positive represents the filling up process with the energy increase. Hence, the total cross-section presents a multifractal behavior. At low-energies, the odderon exchange may be associated with the negative fractal dimension and at high-energies, the pomeron may be associated with the positive fractal dimension. Therefore, the exchange of odderons and pomerons may be viewed as a transition from a less well-defined to a more well-defined internal structure, depending on the energy.

2000 ◽  
Vol 15 (01) ◽  
pp. 9-13 ◽  
Author(s):  
C. BOURRELY ◽  
J. SOFFER ◽  
TAI TSUN WU

We show that the rising total cross-sections σ(γγ→ hadrons) recently observed by the L3 and OPAL collaborations at LEP are fully consistent with the impact-picture for high-energy scattering. The impact picture is then used to predict this γγ total cross-section at higher energies, and confirm the universal increase of total cross-sections including those of pp, [Formula: see text] and γp.


2008 ◽  
Vol 23 (27n30) ◽  
pp. 2313-2316 ◽  
Author(s):  
◽  
H. KANDA ◽  
N. CHIGA ◽  
Y. FUJII ◽  
K. FUTATSUKAWA ◽  
...  

The total cross sections for the π+π− photoproduction on the deuteron were measured in an energy range of 0.8 to 1.1 GeV. The obtained total cross section for the quasi-free π+π− photoproduction on the deuteron was about 60 % of those on the free proton. The cross section for Δ++Δ− photoproduction was derived from the non-quasi-free π+π− photoproduction events. It was smaller than the previous data.


1975 ◽  
Vol 53 (10) ◽  
pp. 962-967 ◽  
Author(s):  
B. Jaduszliwer ◽  
A. Nakashima ◽  
D. A. L. Paul

The total cross sections for the scattering of positrons by helium have been measured by the method of transmission in the 16 to 270 eV energy range. The experimental results are higher than those of Canter et al. but are in reasonable agreement with recent results of Griffith et al., and at high energies tend towards Born approximation calculations. The integral of the cross section over positron momentum is smaller than the sum rule estimate made by Bransden et al. A tentative value of (0.034 ± 0.017)πa02 is assigned to the positronium formation cross section at threshold.


Precise measurements of the total cross sections of positive and negative π mesons on hydrogen have revealed the presence of structure or enhancements in these cross sections at various momenta up to 3 GeV/ c . The present paper discusses measurements of this type and in particular, a recent experiment to search for structure in the region 3 to 7 GeV/ c , where previous experiments have shown that, if structure were present, it was likely to reveal itself as an amplitude in the total cross section of 1 mb or less. The recent measurements indicate four regions of structure, two in each of the isotopic spin states 3/2 and 1/2. The possible relation of these regions of structure to the formation of pion-nucleon resonances is discussed.


1998 ◽  
Vol 13 (09) ◽  
pp. 1515-1522 ◽  
Author(s):  
E. A. ANDREEVA ◽  
M. N. STRIKHANOV ◽  
S. B. NURUSHEV

The experimental data on the pp-total cross-sections including the spin-dependent parts are analyzed with the goal to determine the contribution of spin interactions at high energies. Based on the Regge model with cuts, the energy dependencies of such contributions are estimated for two spin-dependent terms: (1) the total spin dependent term, σ1 and (2) the spin projection dependent term, σ2. The estimates show that their contributions to the unpolarized total cross section, σ0, decrease with energy from several % around 2 GeV/c to 10-2% around 200 GeV/c. The assumption σ1= -σ2 does not seem to be correct, while the hypothesis 3 σ1=-σ2 is more preferable, especially in the measured energy interval 2-6 GeV. There is a clear indication that the spin effects are sensitive to the pomeron intercept at - t=0 (GeV/c)2. In order to pin down such effects the spin dependent total cross-sections must be measured with precisions better than 10 μb at 200 GeV/c.


1977 ◽  
Vol 30 (1) ◽  
pp. 61 ◽  
Author(s):  
HB Milloy ◽  
RW Crompton ◽  
JA Rees ◽  
AG Robertson

The momentum transfer cross section for electron-argon collisions in the range 0–4 eV has been derived from an analysis of recent measurements of DT/μ as a function of E/N at 294 K (Milloy and Crompton 1977a) and W as a function of E/N at 90 and 293 K (Robertson 1977). Modified effective range theory was used in the fitting procedure at low energies. An investigation of the range of validity of this theory indicated that the scattering length and effective range were uniquely determined ,and hence the cross section could be accurately extrapolated to zero energy. It is concluded that for ε ≤ 0.1 eV the error in !he cross section is less than � 6 % and in the range 0.4 ≤ ε (eV) ≤ 0.4 the error is less than � 8 %. In the range 0.1 < ε (eV) < 0.4 the presence of the minimum makes it difficult to determine the errors in the cross section but it is estimated that they are less than −20 %, +12 %. It is demonstrated that no other reported cross sections are compatible with the experimental results used in the present derivation.


2010 ◽  
Vol 19 (12) ◽  
pp. 2393-2399 ◽  
Author(s):  
T. Ishikawa

The differential and total cross sections were measured for the γp → ηp and γd → ηpn reactions at Eγ ≤ 1150 MeV by using an electro-magnetic (EM) calorimeter SCISSORS II at the Laboratory of Nuclear Science (LNS), Tohoku University. The total cross section on the deuteron shows a bump around Eγ = 1 GeV , while no bump is observed in the same energy region of that on the proton. This bump is attributed to be a nucleon resonance excited from the neutron, and it is a candidate of anti-decuplet penta-quark baryons with hidden strangeness. It was difficult, however, to detect all the γ's coming from η decay since the solid angle of SCISSORS II was only 12.6% in total. Statistics of the detected η produced events is poor and systematic uncertainty of the obtained cross section is not small due to low acceptance. A new EM calorimeter complex called FOREST with a solid angle of about 4π sr has been constructed. The spin and parity of the relevant resonance are expected to be determined by the experiments with FOREST.


1972 ◽  
Vol 25 (6) ◽  
pp. 679
Author(s):  
JA Campbell

A simulation of extensive air showers above 1013 eV in which proton?proton scattering takes place partly through a medium-strong interaction is reported. In previous papers the simulation has been shown to be in fair agreement with observational data. The present version includes for the first time the assumption that the total cross section for proton-proton scattering increases with energy, as concluded in a recent paper by Yodh, Pal, and Trefil. The effect of the assumption is to make a noticeably better agreement between the simulation and the data.


1986 ◽  
Vol 01 (01) ◽  
pp. 211-225 ◽  
Author(s):  
GARY R. GOLDSTEIN ◽  
MICHAEL J. MORAVCSIK

Total cross section measurements and the type of inclusive reactions in which no final-state polarizations are measured are discussed. The numbers and kinds of independent non-zero experiments are given and related to the exclusive reaction amplitudes. Only a well-specified and limited type of bilinear product of exclusive reaction amplitudes enter the picture. Certain classes of theories imply certain simple relationships among the observables. The main results of the investigation are summarized in Sec. 5.


Sign in / Sign up

Export Citation Format

Share Document