scholarly journals Quantum square-well with logarithmic central spike

2018 ◽  
Vol 33 (02) ◽  
pp. 1850009 ◽  
Author(s):  
Miloslav Znojil ◽  
Iveta Semorádová

Singular repulsive barrier [Formula: see text] inside a square-well is interpreted and studied as a linear analog of the state-dependent interaction [Formula: see text] in nonlinear Schrödinger equation. In the linearized case, Rayleigh–Schrödinger perturbation theory is shown to provide a closed-form spectrum at sufficiently small [Formula: see text] or after an amendment of the unperturbed Hamiltonian. At any spike strength [Formula: see text], the model remains solvable numerically, by the matching of wave functions. Analytically, the singularity is shown regularized via the change of variables [Formula: see text] which interchanges the roles of the asymptotic and central boundary conditions.

1967 ◽  
Vol 45 (7) ◽  
pp. 2231-2238 ◽  
Author(s):  
M. Cohen ◽  
R. P. McEachran ◽  
Sheila D. McPhee

A combination of Rayleigh–Schrödinger perturbation theory and variational techniques, previously used to calculate the wave functions of the lowest σ and π states of H2+ has been applied to the 1sσ and 2pπ states of HeH++. The accuracy of the resulting approximate wave functions is demonstrated by comparing a number of quantities calculated with them with the corresponding exact values.


1967 ◽  
Vol 45 (8) ◽  
pp. 2533-2542 ◽  
Author(s):  
M. Cohen ◽  
R. P. McEachran ◽  
Sheila D. McPhee

Properties of the lowest even and odd δ states of the hydrogen molecule–ion have been calculated using approximate wave functions. These were derived using a combination of Rayleigh–Schrödinger perturbation theory and variational methods, which have been applied previously to calculate the corresponding wave functions of the lowest σ and π states. Our total molecular energies are in excellent agreement with the recent exact calculations of Hunter and Pritchard (1967). A simple criterion is suggested for judging the accuracy of the approximate orbitals, which indicates that all the molecular properties calculated will be accurate over a wide range of internuclear separations.


2002 ◽  
Vol 88 (2) ◽  
pp. 263-274 ◽  
Author(s):  
Shun S. Lo ◽  
Daniel A. Morales

1964 ◽  
Vol 10 (1) ◽  
pp. 73 ◽  
Author(s):  
K. Hausmann ◽  
W. Macke ◽  
P. Ziesche

2018 ◽  
Vol 16 ◽  
pp. 123-133
Author(s):  
Fabian Ossevorth ◽  
Ralf T. Jacobs ◽  
Hans Georg Krauthäuser

Abstract. A full wave description of a thin wire structure, that includes mutual interactions and radiation, can be obtained in closed form with the so-called Transmission Line Super Theory or a refined variant of this method that utilises perturbation theory. In either procedure, a set of mixed potential integral equations is solved for the currents that propagate along a wire. With the perturbation approach, no iteration is required to approximate the initial current distribution on the wire. This procedure will be applied to solve multi-wire problems. The theory will be derived and computed results will be shown to be in good agreement with method of moment computations.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Stefano Gabriele ◽  
Valerio Varano

We are going to analyze the interval solution of an elastic beam under uncertain boundary conditions. Boundary conditions are defined as rotational springs presenting interval stiffness. Developments occur according to the interval analysis theory, which is affected, at the same time, by the overestimation of interval limits (also known as overbounding, because of the propagation of the uncertainty in the model). We suggest a method which aims to reduce such an overestimation in the uncertain solution. This method consists in a reparameterization of the closed form Euler-Bernoulli solution and set intersection.


Sign in / Sign up

Export Citation Format

Share Document