scholarly journals A full wave description for thin wire structures with TLST and perturbation theory

2018 ◽  
Vol 16 ◽  
pp. 123-133
Author(s):  
Fabian Ossevorth ◽  
Ralf T. Jacobs ◽  
Hans Georg Krauthäuser

Abstract. A full wave description of a thin wire structure, that includes mutual interactions and radiation, can be obtained in closed form with the so-called Transmission Line Super Theory or a refined variant of this method that utilises perturbation theory. In either procedure, a set of mixed potential integral equations is solved for the currents that propagate along a wire. With the perturbation approach, no iteration is required to approximate the initial current distribution on the wire. This procedure will be applied to solve multi-wire problems. The theory will be derived and computed results will be shown to be in good agreement with method of moment computations.

2019 ◽  
Vol 17 ◽  
pp. 177-187
Author(s):  
Sergey V. Tkachenko ◽  
Juergen B. Nitsch ◽  
Felix Middelstaedt ◽  
Ronald Rambousky ◽  
Martin Schaarschmidt ◽  
...  

Abstract. Here, we describe a technique to define the Singularity Expansion Method (SEM) poles for short-circuited thin-wire structures developed using the Method of Modal Parameters (MoMP). The MoMP method consists of in the expansion of the system of mixed-potential integral equations (MPIE) into the Fourier series, including the kernels containing Green's function. Corresponding equations for Fourier modes contain infinite matrices of p.u.l. inductance and capacitance, and the solution for current can be obtained using the infinity matrix of p.u.l. impedance. The SEM poles are given by the zeros of the determinant of this matrix. For the case of the symmetrical circular loop, this equation transforms to one well-know from the literature. Numerical investigation of solutions for the poles of the first layer has shown good agreement with previously obtained analytical and numerical results for different wire configurations.


2019 ◽  
Author(s):  
Sayan Mondal ◽  
Gary Tresadern ◽  
Jeremy Greenwood ◽  
Byungchan Kim ◽  
Joe Kaus ◽  
...  

<p>Optimizing the solubility of small molecules is important in a wide variety of contexts, including in drug discovery where the optimization of aqueous solubility is often crucial to achieve oral bioavailability. In such a context, solubility optimization cannot be successfully pursued by indiscriminate increases in polarity, which would likely reduce permeability and potency. Moreover, increasing polarity may not even improve solubility itself in many cases, if it stabilizes the solid-state form. Here we present a novel physics-based approach to predict the solubility of small molecules, that takes into account three-dimensional solid-state characteristics in addition to polarity. The calculated solubilities are in good agreement with experimental solubilities taken both from the literature as well as from several active pharmaceutical discovery projects. This computational approach enables strategies to optimize solubility by disrupting the three-dimensional solid-state packing of novel chemical matter, illustrated here for an active medicinal chemistry campaign.</p>


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1259
Author(s):  
Dmitry Kozlov ◽  
Irina Munina ◽  
Pavel Turalchuk ◽  
Vitalii Kirillov ◽  
Alexey Shitvov ◽  
...  

A new implementation of a beam-steering transmitarray is proposed based on the tiled array architecture. Each pixel of the transmitarray is manufactured as a standalone unit which can be hard-wired for specific transmission characteristics. A set of complementary units, providing reciprocal phase-shifts, can be assembled in a prescribed spatial phase-modulation pattern to perform beam steering and beam forming in a broad spatial range. A compact circuit model of the tiled unit cell is proposed and characterized with full-wave electromagnetic simulations. Waveguide measurements of a prototype unit cell have been carried out. A design example of a tiled 10 × 10-element 1-bit beam-steering transmitarray is presented and its performance benchmarked against the conventional single-panel, i.e., unibody, counterpart. Prototypes of the tiled and single-panel C-band transmitarrays have been fabricated and tested, demonstrating their close performance, good agreement with simulations and a weak effect of fabrication tolerances. The proposed transmitarray antenna configuration has great potential for fifth-generation (5G) communication systems.


2014 ◽  
Vol 519-520 ◽  
pp. 929-933 ◽  
Author(s):  
Zhe Ji ◽  
You Zheng Wang ◽  
Jian Hua Lu

In this paper, we study the effective capacity (EC) which was proposed to measure the quality of service (QoS) for fading channels. A unified expression for the effective capacity based on the method of moment generating function (MGF) is proposed. The unified expression applies to various fading channels and is derived for both single antenna and multiple antenna diversity system. The mathematical expression is illustrated with Nakagami-m fading channels and closed form expressions are derived in this case. The simulation results verify the consistence of the closed-form expressions with numerical evaluations.


2018 ◽  
Vol 33 (02) ◽  
pp. 1850009 ◽  
Author(s):  
Miloslav Znojil ◽  
Iveta Semorádová

Singular repulsive barrier [Formula: see text] inside a square-well is interpreted and studied as a linear analog of the state-dependent interaction [Formula: see text] in nonlinear Schrödinger equation. In the linearized case, Rayleigh–Schrödinger perturbation theory is shown to provide a closed-form spectrum at sufficiently small [Formula: see text] or after an amendment of the unperturbed Hamiltonian. At any spike strength [Formula: see text], the model remains solvable numerically, by the matching of wave functions. Analytically, the singularity is shown regularized via the change of variables [Formula: see text] which interchanges the roles of the asymptotic and central boundary conditions.


2019 ◽  
Vol 8 (1) ◽  
pp. 82-90
Author(s):  
L. K. Warne ◽  
S. Campione ◽  
R. S. Coats

This paper considers plane wave coupling to a transmission line consisting of an aerial wire above a conducting ground. Simple circuit models are constructed for the terminating impedances at the ends of the line including radiation effects. We consider the following load topologies: open circuit, short circuit, and grounded rods. Results from the transmission line model with these loads show good agreement with full-wave simulations.  


1976 ◽  
Vol 20 (03) ◽  
pp. 160-170
Author(s):  
Nils Salvesen ◽  
C. von Kerczek

Numerical solutions of the nonlinear problem of the steady two-dimensional potential flow past a submerged line vortex are obtained using the finite-difference iterative technique previously presented by the authors. These solutions are compared in detail with third-order perturbation theory solutions. It is found that very good agreement is obtained for cases of positive circulation of the vortex with strength large enough to produce downstream waves whose steepness is within 15 percent of the maximum possible steepness of irrotational free waves. These computed waves are as steep as the steepest waves obtained in a certain experiment involving the flow past a two-dimensional hydrofoil. For negative circulation, there is substantial difference between the numerical results and third-order perturbation theory. The failure of the perturbation theory is discussed. Details of the far-downstream wave system obtained by the numerical method are compared with other numerical solutions and very high-order perturbation theory solutions of the free-wave problem. Very good agreement is obtained in most cases.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Mohammad Reza Khawary ◽  
Vahid Nayyeri ◽  
Seyed Mohammad Hashemi ◽  
Mohammad Soleimani

This paper presents a novel ultracompact narrow bandpass filter with high selectivity. The proposed filter is composed of cascading two basic cells. Each cell is basically a microstrip line loaded with a quasiplanar resonator and series gaps which can be fabricated using a standard multilayer printed circuit board technology. The structure is analyzed through an equivalent circuit and full-wave simulations. The simulation results are compared with experimental measurements demonstrating a good agreement between them. The measurement indicates that the realized bandpass filter at the center frequency of 1 GHz has a fractional bandwidth of 2.2%. Most importantly, in comparison with other similar recent works, it is shown that the proposed filter has the smallest size.


2012 ◽  
Vol 479-481 ◽  
pp. 497-503 ◽  
Author(s):  
He Zhong Pei ◽  
Jun Zhang ◽  
Guo Liang Zhang ◽  
Pan Huang

The effects of additive TN1, power waveforms (full wave, half wave, and direct current), current density and pH on the throwing power of Ni-Co alloy electroforming solution had been investigated by orthogonal tests; and the effects of plating parameters on current distribution of cathode by ANSYS numerical simulation were discussed. The results of orthogonal test showed that the additive TN1 had the largest effect on the throwing power; the power waveform was secondary; the current density and pH had minor effect. The biggest throwing power was 78% when the TN1 was 15g/L and waveform was full wave. Numerical simulation showed that the cathode shape and shield had effect on current distribution; reasonable cathode shape and application of shield could improve the current distribution. The thickness uniformity of part could be up to 92% by optimizing of electrolyte, adjusting the electroforming technics and applying second electroplating.


Sign in / Sign up

Export Citation Format

Share Document