Bilinear approach to supersymmetric AKNS system; multiple dressing of fermionic amplitudes

2020 ◽  
Vol 35 (17) ◽  
pp. 2050143 ◽  
Author(s):  
Corina N. Babalic ◽  
A. S. Carstea

In this paper, we investigate the super-bilinear formalism and interaction of supersoliton solutions for the supersymmetric AKNS system [H. Aratyn and A. Das, Mod. Phys. Lett. A 13, 1185 (1998)]. It is shown that the super-bilinear form involves an auxiliary fermionic tau function and the supersolitons have less freedom than expected (concerning the dependence on fermionic parameters). Also, the interaction between super-solitons is much more complicated than in the case of real supersymmetric equations (KdV, mKdV, Sawada–Kotera, Sine–Gordon, etc.), involving four types of dressing of the fermionic parameters. These solutions are general compared to the ones found in Ref. 1 which contain no fermionic parameter.

2020 ◽  
Vol 34 ◽  
pp. 03002
Author(s):  
Corina N. Babalic

The semidiscrete complex modified Korteweg–de Vries equation (semidiscrete cmKdV), which is the second member of the semidiscrete nonlinear Schrődinger hierarchy (Ablowitz–Ladik hierarchy), is solved using the Hirota bilinear formalism. Starting from the focusing case of semidiscrete form of cmKdV, proposed by Ablowitz and Ladik, we construct the bilinear form and build the multi-soliton solutions. The complete integrability of semidiscrete cmKdV, focusing case, is proven and results are discussed.


2013 ◽  
Vol 63 (4) ◽  
Author(s):  
Beata Rothkegel

AbstractIn the paper we formulate a criterion for the nonsingularity of a bilinear form on a direct sum of finitely many invertible ideals of a domain. We classify these forms up to isometry and, in the case of a Dedekind domain, up to similarity.


2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Marco Bertola

AbstractThe paper has two relatively distinct but connected goals; the first is to define the notion of Padé approximation of Weyl–Stiltjes transforms on an arbitrary compact Riemann surface of higher genus. The data consists of a contour in the Riemann surface and a measure on it, together with the additional datum of a local coordinate near a point and a divisor of degree g. The denominators of the resulting Padé-like approximation also satisfy an orthogonality relation and are sections of appropriate line bundles. A Riemann–Hilbert problem for a square matrix of rank two is shown to characterize these orthogonal sections, in a similar fashion to the ordinary orthogonal polynomial case. The second part extends this idea to explore its connection to integrable systems. The same data can be used to define a pairing between two sequences of line bundles. The locus in the deformation space where the pairing becomes degenerate for fixed degree coincides with the zeros of a “tau” function. We show how this tau function satisfies the Kadomtsev–Petviashvili hierarchy with respect to either deformation parameters, and a certain modification of the 2-Toda hierarchy when considering the whole sequence of tau functions. We also show how this construction is related to the Krichever construction of algebro-geometric solutions.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Jean-Emile Bourgine

Abstract In [1], Nakatsu and Takasaki have shown that the melting crystal model behind the topological strings vertex provides a tau-function of the KP hierarchy after an appropriate time deformation. We revisit their derivation with a focus on the underlying quantum W1+∞ symmetry. Specifically, we point out the role played by automorphisms and the connection with the intertwiner — or vertex operator — of the algebra. This algebraic perspective allows us to extend part of their derivation to the refined melting crystal model, lifting the algebra to the quantum toroidal algebra of $$ \mathfrak{gl} $$ gl (1) (also called Ding-Iohara-Miki algebra). In this way, we take a first step toward the definition of deformed hierarchies associated to A-model refined topological strings.


2021 ◽  
Vol 111 (1) ◽  
Author(s):  
Graham Denham ◽  
Mathias Schulze ◽  
Uli Walther

AbstractConsider a linear realization of a matroid over a field. One associates with it a configuration polynomial and a symmetric bilinear form with linear homogeneous coefficients. The corresponding configuration hypersurface and its non-smooth locus support the respective first and second degeneracy scheme of the bilinear form. We show that these schemes are reduced and describe the effect of matroid connectivity: for (2-)connected matroids, the configuration hypersurface is integral, and the second degeneracy scheme is reduced Cohen–Macaulay of codimension 3. If the matroid is 3-connected, then also the second degeneracy scheme is integral. In the process, we describe the behavior of configuration polynomials, forms and schemes with respect to various matroid constructions.


2020 ◽  
Vol 32 (4) ◽  
pp. 995-1026
Author(s):  
Carme Cascante ◽  
Joaquín M. Ortega

AbstractIn this paper, we show that if {b\in L^{2}(\mathbb{R}^{n})}, then the bilinear form defined on the product of the non-homogeneous Sobolev spaces {H_{s}^{2}(\mathbb{R}^{n})\times H_{s}^{2}(\mathbb{R}^{n})}, {0<s<1}, by(f,g)\in H_{s}^{2}(\mathbb{R}^{n})\times H_{s}^{2}(\mathbb{R}^{n})\to\int_{% \mathbb{R}^{n}}(\mathrm{Id}-\Delta)^{\frac{s}{2}}(fg)(\mathbf{x})b(\mathbf{x})% \mathop{}\!d\mathbf{x}is continuous if and only if the positive measure {\lvert b(\mathbf{x})\rvert^{2}\mathop{}\!d\mathbf{x}} is a trace measure for {H_{s}^{2}(\mathbb{R}^{n})}.


2015 ◽  
Vol 26 ◽  
pp. 144-153 ◽  
Author(s):  
Daniel Abril ◽  
Vicenç Torra ◽  
Guillermo Navarro-Arribas

2012 ◽  
Vol 26 (15) ◽  
pp. 1250057
Author(s):  
HE LI ◽  
XIANG-HUA MENG ◽  
BO TIAN

With the coupling of a scalar field, a generalization of the nonlinear Klein–Gordon equation which arises in the relativistic quantum mechanics and field theory, i.e., the coupled nonlinear Klein–Gordon equations, is investigated via the Hirota method. With the truncated Painlevé expansion at the constant level term with two singular manifolds, the coupled nonlinear Klein–Gordon equations are transformed to a bilinear form. Starting from the bilinear form, with symbolic computation, we obtain the N-soliton solutions for the coupled nonlinear Klein–Gordon equations.


Sign in / Sign up

Export Citation Format

Share Document