scholarly journals Quintessences compact star with Durgapal potential

2020 ◽  
Vol 35 (17) ◽  
pp. 2050144 ◽  
Author(s):  
Gabino Estevez-Delgado ◽  
Joaquin Estevez-Delgado ◽  
Aurelio Tamez Murguía ◽  
Rafael Soto-Espitia ◽  
Arthur Cleary-Balderas

A compact star model formed by quintessence and ordinary matter is presented, both sources have anisotropic pressures and are described by linear state equations, also the state equation of the tangential pressure for the ordinary matter incorporates the effect of the quintessence. It is shown that depending on the compactness of the star [Formula: see text] the constant of proportionality [Formula: see text] between the density of the ordinary matter and the radial pressure, [Formula: see text], has an interval of values which is consistent with the possibility that the matter is formed by a mixture of particles like quarks, neutrons and electrons and not only by one type of them. The geometry is described by the Durgapal metric for [Formula: see text] and each one of the pressures and densities is positive, finite and monotonic decreasing, as well as satisfying the condition of causality and of stability [Formula: see text], which makes our model physically acceptable. The maximum compactness that we have is [Formula: see text], so we can apply our solution considering the observational data of mass and radii [Formula: see text], [Formula: see text] km which generate a compactness [Formula: see text] associated to the star PSR J0348[Formula: see text]+[Formula: see text]0432. In this case, the interval of [Formula: see text] and its maximum central density [Formula: see text] and in the surface [Formula: see text] of the star are [Formula: see text] and [Formula: see text], respectively, meanwhile the central density of the quintessence [Formula: see text].

2021 ◽  
Vol 36 (29) ◽  
Author(s):  
Joaquin Estevez-Delgado ◽  
Modesto Pineda Duran ◽  
Arthur Cleary-Balderas ◽  
Noel Enrique Rodríguez Maya ◽  
José Martínez Peña

Starting from a regular, static and spherically symmetric spacetime, we present a stellar model formed by two sources of ordinary and quintessence matter both with anisotropic pressures. The ordinary matter, with density [Formula: see text], is formed by a fluid with a state equation type Chaplygin [Formula: see text] for the radial pressure. And the quintessence matter, with density [Formula: see text], has a state equation [Formula: see text] for the radial pressure and [Formula: see text] for the tangential pressure with [Formula: see text]. The model satisfies the required conditions to be physically acceptable and additionally the solution is potentially stable, i.e. [Formula: see text] according to the cracking concept, and it also satisfies the Harrison–Zeldovich–Novikov criteria. We describe in a graphic manner the behavior of the solution for the case in which the mass is [Formula: see text] and radius [Formula: see text][Formula: see text]km which matches the star EXO 1785-248, from where we obtain the maximum density [Formula: see text] for the values of the parameters [Formula: see text], [Formula: see text].


2020 ◽  
Vol 80 (9) ◽  
Author(s):  
Gabino Estevez-Delgado ◽  
Joaquin Estevez-Delgado

AbstractThe astronomical observations on the accelerated expansion of the universe generate the possibility that the internal matter of the stars is not only formed by ordinary matter but also by matter with negative pressure. We discuss the existence of stars formed by the coexistence of two types of fluids, one associated to quintessence dark matter described by the radial and tangential pressures $$(P_{rq},P_{tq})$$ ( P rq , P tq ) and the density $$\rho _{q}$$ ρ q characterized by a parameter $$-1<w<-\frac{1}{3}$$ - 1 < w < - 1 3 and ordinary matter described by an anisotropic fluid with radial pressure of a strange star given by the MIT Bag model $$P_r=\frac{1}{3}(c^2\rho -4B_g)$$ P r = 1 3 ( c 2 ρ - 4 B g ) and tangential pressure $$P_t=\frac{1}{3}(c^2\rho -4B_g)-\frac{3}{2}(1+w)c^2\rho _q$$ P t = 1 3 ( c 2 ρ - 4 B g ) - 3 2 ( 1 + w ) c 2 ρ q , in which the effect is reflected of the quintessence dark matter over the ordinary matter. Via a theorem we show that the geometry that describes this interaction is equivalent to that of a perfect fluid with ordinary matter. Taking as geometry the one associated with a model for neutron stars, a physically acceptable and stable model is obtained. The application to the star Her X-1, as a candidate to a strange quark star, generates for us a value of the MIT Bag constant $$B_g = 97.0048\,\mathrm{Mev}/\mathrm{fm}^3$$ B g = 97.0048 Mev / fm 3 , which is found to be inside the expected interval.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
G. G. L. Nashed ◽  
Amare Abebe ◽  
Kazuharu Bamba

AbstractWe revisit the neutral (uncharged) solutions that describe Einstein’s clusters with matters in the frame of Weitzenböck geometry. To this end, we use a tetrad field with non-diagonal spherical symmetry which gives vanishing of the off-diagonal components of the gravitational field equations. The cluster solutions are calculated by using an anisotropic energy–momentum tensor. We solve the field equations using two novel assumptions. First, we use an equation of state that relates density with tangential pressure, and then we assume a specific form of one of the metric potentials in addition to the assumption of the vanishing of radial pressure to make the system of differential equations in a closed-form. The resulting solutions are coincide with the literature $$ however \, \,in\, \,this\, \,study\, \,we\, \,constrain\,\, the\,\, constants \, \,of\, \, integration\, \, from\, \, \,the\, \, matching\,\, of\, \,boundary $$ h o w e v e r i n t h i s s t u d y w e c o n s t r a i n t h e c o n s t a n t s o f i n t e g r a t i o n f r o m t h e m a t c h i n g o f b o u n d a r y $$ condition\, \, in a\,\, way \,\,different\,\, from\,\, that\,\, presented \,\,in \,\,the\,\, literature. $$ c o n d i t i o n i n a w a y d i f f e r e n t f r o m t h a t p r e s e n t e d i n t h e l i t e r a t u r e . Among many things presented in this study, we investigate the static stability specification and show that our model is consistent with a real compact start except that the tangential pressure has a vanishing value at the center of the star which is not accepted from the physical viewpoint of a real compact star. We conclude that the model that has vanishing radial pressure in the frame of Einstein’s theory is not a physical model. Therefore, we extend this study and derive a new compact star without assuming the vanishing of the redial pressure but instead we assume new form of the metric potentials. We repeat our procedure done in the case of vanishing radial pressure and show in details that the new compact star is more realistic from different physical viewpoints of real compact stellar.


2021 ◽  
Author(s):  
Baiju Dayanandan ◽  
T. T. Smitha ◽  
Sunil Maurya

Abstract This paper addresses a new gravitationally decoupled anisotropic solution for the compact star model via the minimal geometric deformation (MGD) approach. We consider a non-singular well-behaved gravitational potential corresponding to the radial component of the seed spacetime and embedding class I condition that determines the temporal metric function to solve the seed system completely. However, two different well-known mimic approaches such as pr = Θ1 1 and ρ = Θ0 0 have been employed to determine the deformation function which gives the solution of the second system corresponding to the extra source. In order to test the physical viability of the solution, we have checked several conditions such as regularity conditions, energy conditions, causality conditions, hydrostatic equilibrium, etc. Moreover, the stability of the solutions has been also discussed by the adiabatic index and its critical value. We find that the solutions set seems viable as far as observational data are concerned.


2021 ◽  
Vol 36 (21) ◽  
pp. 2150153
Author(s):  
Joaquin Estevez-Delgado ◽  
Noel Enrique Rodríguez Maya ◽  
José Martínez Peña ◽  
Arthur Cleary-Balderas ◽  
Jorge Mauricio Paulin-Fuentes

A stellar model with an electrically charged anisotropic fluid as a source of matter is presented. The radial pressure is described by a Chaplygin state equation, [Formula: see text], while the anisotropy [Formula: see text] is annulled in the center of the star [Formula: see text] is regular and [Formula: see text], the electric field, is also annulled in the center. The density pressures and the tangential speed of sound are regular, while the radial speed of sound is monotonically increasing. The model is physically acceptable and meets the stability criteria of Harrison–Zeldovich–Novikov and in respect of the cracking concept the solution is unstable in the region of the center and potentially stable near the surface. A graphic description is presented for the case of an object with a compactness rate [Formula: see text], mass [Formula: see text] and radius [Formula: see text] km that matches the star Vela X-1. Also, the interval of the central density [Formula: see text], which is consistent with the expected magnitudes for this type of stars, which shows that the behavior is accurate for describing compact objects.


Author(s):  
C Mellace ◽  
A P Lai ◽  
A Gugliotta ◽  
N Bosso ◽  
T Sinokrot ◽  
...  

One of the important issues associated with the use of trajectory coordinates in railroad vehicle dynamic algorithms is the ability of such coordinates to deal with braking and traction scenarios. In these algorithms, track coordinate systems that travel with constant speeds are introduced. As a result of using a prescribed motion for these track coordinate systems, the simulation of braking and/or traction scenarios becomes difficult or even impossible. The assumption of the prescribed motion of the track coordinate systems can be relaxed, thereby allowing the trajectory coordinates to be effectively used in modelling braking and traction dynamics. One of the objectives of this investigation is to demonstrate that by using track coordinate systems that can have an arbitrary motion, the trajectory coordinates can be used as the basis for developing computer algorithms for modelling braking and traction conditions. To this end, a set of six generalized trajectory coordinates is used to define the configuration of each rigid body in the railroad vehicle system. This set of coordinates consists of an arc length that represents the distance travelled by the body, and five relative coordinates that define the configuration of the body with respect to its track coordinate system. The independent non-linear state equations of motion associated with the trajectory coordinates are identified and integrated forward in time in order to determine the trajectory coordinates and velocities. The results obtained in this study show that when the track coordinate systems are allowed to have an arbitrary motion, the resulting set of trajectory coordinates can be used effectively in the study of braking and traction conditions. The results obtained using the trajectory coordinates are compared with the results obtained using the absolute Cartesian-coordinate-based formulations, which allow modelling braking and traction dynamics. In addition to this numerical validation of the trajectory coordinate formulation in braking scenarios, an experimental validation is also conducted using a roller test rig. The comparison presented in this study shows a good agreement between the obtained experimental and numerical results.


2021 ◽  
pp. 2150070
Author(s):  
Joaquin Estevez-Delgado ◽  
Gabino Estevez-Delgado ◽  
Noel Enrique Rodríguez Maya ◽  
José Martínez Peña ◽  
Aurelio Tamez Murguía

A static anisotropic relativistic fluid sphere model with regular geometry and finite hydrostatic functions is presented. In the interior of the sphere, the density, radial pressure and tangential pressure are positives, monotonically decreasing with increasing radius and the radial pressure vanishes at the surface of the matter distribution and is joined continuously to the exterior Schwarzschild’s solution at this surface. The speeds of the radial and tangential sound are positive and lower than the speed of light, that is, the causal condition is not violated, and also the behavior of these guarantees that the model is potentially stable. Furthermore, the range of the compactness ratio is characteristic of compact stars and it is shown that the effect of the anisotropy generates that the speed of the radial sound can behave as a function monotonically increasing or monotonically decreasing.


2017 ◽  
Vol 26 (09) ◽  
pp. 1750090 ◽  
Author(s):  
Piyali Bhar ◽  
Ksh. Newton Singh ◽  
Tuhina Manna

In the present paper, we have constructed a new relativistic anisotropic compact star model having a spherically symmetric metric of embedding class one. Here we have assumed an arbitrary form of metric function [Formula: see text] and solved the Einstein’s relativistic field equations with the help of Karmarkar condition for an anisotropic matter distribution. The physical properties of our model such as pressure, density, mass function, surface red-shift, gravitational redshift are investigated and the stability of the stellar configuration is discussed in details. Our model is free from central singularities and satisfies all energy conditions. The model we present here satisfy the static stability criterion, i.e. [Formula: see text] for [Formula: see text][Formula: see text]g/cm3(stable region) and for [Formula: see text][Formula: see text]g/cm3, the region is unstable i.e. [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document