scholarly journals Thermodynamics and statistical physics of quasiparticles within the quark–gluon plasma model

2020 ◽  
Vol 35 (23) ◽  
pp. 2050194
Author(s):  
Vladimir Dzhunushaliev ◽  
Vladimir Folomeev ◽  
Tlekkabul Ramazanov ◽  
Tolegen Kozhamkulov

We consider thermodynamic properties of a quark–gluon plasma related to quasiparticles having the internal structure. For this purpose, we employ a possible analogy between quantum chromodynamics and non-Abelian Proca-Dirac-Higgs theory. The influence of characteristic sizes of the quasiparticles on such thermodynamic properties of the quark–gluon plasma like the internal energy and pressure is studied. Sizes of the quasiparticles are taken into account in the spirit of the van der Waals equation but we take into consideration that the quasiparticles have different sizes, and the average value of these sizes depends on temperature. It is shown that this results in a change in the internal energy and pressure of the quark–gluon plasma. Also, we show that, when the temperature increases, the average value of characteristic sizes of the quasiparticles increases as well. This leads to the occurrence of a phase transition at the temperature at which the volume occupied by the quasiparticles is compared with the volume occupied by the plasma.

1989 ◽  
Vol 67 (12) ◽  
pp. 1228-1249 ◽  
Author(s):  
Jean Potvin

The numerical simulation of quantum chromodynamics on a space–time lattice allows for the calculation of many properties of hadronic matter at high temperature in a direct and in a nonperturbative fashion. This paper will be a review of the calculation techniques and results published in the past 5 years. Among other things, I will discuss the order of the phase transition, the critical temperature, the force between heavy quarks, as well as the thermodynamics and the spectroscopy of the quark–gluon plasma.


2017 ◽  
Vol 26 (01n02) ◽  
pp. 1740029
Author(s):  
Vicente Vento

The phase diagram of quantum chromodynamics is conjectured to have a rich structure containing at least three forms of matter: hadronic nuclear matter, quarkyonic matter and quark–gluon plasma. We justify the origin of the quarkyonic phase transition in a chiral-quark model and describe its formulation in terms of Skyrme crystals.


1998 ◽  
Vol 5 (4) ◽  
pp. 711 ◽  
Author(s):  
Munshi Golam Mustafa ◽  
Dinesh Kumar Srivastava ◽  
Bikash Sinha

2012 ◽  
Vol 21 (08) ◽  
pp. 1250069 ◽  
Author(s):  
K. ATAZADEH ◽  
A. M. GHEZELBASH ◽  
H. R. SEPANGI

In the standard picture of cosmology it is predicted that a phase transition, associated with chiral symmetry breaking after the electroweak transition, has occurred at approximately 10μ seconds after the Big Bang to convert a plasma of free quarks and gluons into hadrons. We consider the quark-hadron phase transition in a Dvali, Gabadadze and Porrati (DGP) brane world scenario within an effective model of QCD. We study the evolution of the physical quantities useful for the study of the early universe, namely, the energy density, temperature and the scale factor before, during and after the phase transition. Also, due to the high energy density in the early universe, we consider the quadratic energy density term that appears in the Friedmann equation. In DGP brane models such a term corresponds to the negative branch (ϵ = -1) of the Friedmann equation when the Hubble radius is much smaller than the crossover length in 4D and 5D regimes. We show that for different values of the cosmological constant on a brane, λ, phase transition occurs and results in decreasing the effective temperature of the quark-gluon plasma and of the hadronic fluid. We then consider the quark-hadron transition in the smooth crossover regime at high and low temperatures and show that such a transition occurs along with decreasing the effective temperature of the quark-gluon plasma during the process of the phase transition.


1999 ◽  
Vol 14 (17) ◽  
pp. 2689-2704 ◽  
Author(s):  
M. A. BRAUN ◽  
C. PAJARES ◽  
J. RANFT

In most of the models of hadronic collisions, the number of exchanged color strings grows with energy and atomic numbers of the projectile and target. At high string densities interaction between them becomes important, which should melt them into the quark–gluon plasma state in the end. It is shown that under certain reasonable assumptions about the string interaction, a phase transition to the quark–gluon plasma indeed takes place in the system of many color strings. It may be of the first or second order, depending on the particular mechanism of the interaction. The critical string density is about unity in both cases. In the latter case the percolation of strings occurs above the critical density. The critical density may have already been reached in central Pb–Pb collisions at 158A GeV.


1998 ◽  
Vol 57 (2) ◽  
pp. 908-915 ◽  
Author(s):  
C. Spieles ◽  
H. Stöcker ◽  
C. Greiner

1996 ◽  
Vol 53 (2) ◽  
pp. 887-895 ◽  
Author(s):  
A. K. Mohanty ◽  
S. K. Kataria

Sign in / Sign up

Export Citation Format

Share Document