Quantum gravity effect on the tunneling particles from Warped-AdS3 black hole

2018 ◽  
Vol 33 (28) ◽  
pp. 1850164 ◽  
Author(s):  
Ganim Gecim ◽  
Yusuf Sucu

In this study, using the Hamilton–Jacobi approach, we investigated the Hawking temperature of the (2 + 1)-dimensional Warped-AdS3 black hole by considering the generalized uncertainty principle (GUP) effect. In this connection, we calculated quantum mechanical tunneling probabilities of the scalar spin-0 and Dirac spin-[Formula: see text] particles from the black hole by using the modified Klein–Gordon and Dirac equations, respectively. Then, we observed that the Hawking temperature of the black hole depends not only on radius and angular velocity of the outer horizon of the black hole, but also on the angular velocity of the inner horizon of the black hole and the total angular momentum, energy and mass of a tunneling particle. In this case, the Hawking radiation of Dirac particle is different from that of the scalar particle. Moreover, this situation shows that the Hawking temperature calculated under the GUP may give us information about which sort of particle is tunneling. And, the direct dependence of the Hawking temperature to the inner horizon’s angular velocity makes the effect of the Chandrasekhar–Friedman–Schutz (CFS) mechanism more clear in the black hole physics.

2017 ◽  
Vol 26 (05) ◽  
pp. 1741018 ◽  
Author(s):  
Muhammad Rizwan ◽  
K. Saifullah

When quantum gravity effects, that are based on generalized uncertainty principle with a minimal measurable length, are incorporated into black hole physics the Klein–Gordon and Dirac equations get modified. Using these modified equations we investigate tunneling of scalar particles and fermions from event and acceleration horizons of accelerating and rotating black holes and obtain the modified Hawking temperature with quantum gravity effects. We see that Hawking temperature depends on black hole parameters as well as the quantum numbers of emitted fermions. The quantum corrections slow down black hole evaporation and leave a black hole remnant. This contradicts complete evaporation of a black hole which is presaged by the standard temperature formula for black holes. The modified Hawking temperatures presented here, in appropriate limits, are consistent with the previous results in the literature.


2019 ◽  
Vol 79 (10) ◽  
Author(s):  
Ganim Gecim ◽  
Yusuf Sucu

Abstract The quantum gravity correction to the Hawking temperature of the 2+1 dimensional spinning dilaton black hole is studied by using the Hamilton-Jacobi approach in the context of the Generalized Uncertainty Principle (GUP). It is observed that the modified Hawking temperature of the black hole depends on both black hole and the tunnelling particle properties. Moreover, it is observed that the mass and the angular momentum of the scalar particle have the same effect on the Hawking temperature of the black hole, while the mass and total angular momentum (orbital+spin) of Dirac particle have different effect. Furthermore, the mass and total angular momentum (orbital+spin) of vector boson particle have a similar effect that of Dirac particle. Also, thermodynamical stability and phase transition of the black hole are discussed for scalar, Dirac and vector boson in the context of GUP, respectively. And, it is observed that the scalar particle probes the black hole as stable whereas, as for Dirac and vector boson particles, it might undergoes second-type phase transition to become stable while in the absence of the quantum gravity effect all of these particle probes the black hole as stable.


2019 ◽  
Vol 34 (09) ◽  
pp. 1950057 ◽  
Author(s):  
Wajiha Javed ◽  
Rimsha Babar ◽  
Ali Övgün

We analyze the effect of the generalized uncertainty principle (GUP) on the Hawking radiation from the hairy black hole in U(1) gauge-invariant scalar–vector–tensor theory by utilizing the semiclassical Hamilton–Jacobi method. To do so, we evaluate the tunneling probabilities and Hawking temperature for scalar and fermion particles for the given spacetime of the black holes with cubic and quartic interactions. For this purpose, we utilize the modified Klein–Gordon equation for the Boson particles and then Dirac equations for the fermion particles, respectively. Next, we examine that the Hawking temperature of the black holes do not depend on the properties of tunneling particles. Moreover, we present the corrected Hawking temperature of scalar and fermion particles which look similar in both interactions, but there are different mass and momentum relationships for scalar and fermion particles in cubic and quartic interactions.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Ganim Gecim ◽  
Yusuf Sucu

We investigate the generalized uncertainty principle (GUP) effect on the Hawking temperature for the 2 + 1-dimensional new-type black hole by using the quantum tunneling method for both the spin-1/2 Dirac and the spin-0 scalar particles. In computation of the GUP correction for the Hawking temperature of the black hole, we modified Dirac and Klein-Gordon equations. We observed that the modified Hawking temperature of the black hole depends not only on the black hole properties, but also on the graviton mass and the intrinsic properties of the tunneling particle, such as total angular momentum, energy, and mass. Also, we see that the Hawking temperature was found to be probed by these particles in different manners. The modified Hawking temperature for the scalar particle seems low compared with its standard Hawking temperature. Also, we find that the modified Hawking temperature of the black hole caused by Dirac particle’s tunneling is raised by the total angular momentum of the particle. It is diminishable by the energy and mass of the particle and graviton mass as well. These intrinsic properties of the particle, except total angular momentum for the Dirac particle, and graviton mass may cause screening for the black hole radiation.


2020 ◽  
Vol 35 (25) ◽  
pp. 2050208
Author(s):  
Ganim Gecim

In this paper, we investigated the quantum gravity effects on the thermal properties of the [Formula: see text]-dimensional noncommutative rotating Banados–Teitelboim–Zanelli (NCR-BTZ) black hole in the context of quantum tunneling of relativistic particles. These include Hawking temperature, the thermally local and global stability conditions, and the phase transitions. For this purpose, in the framework of the generalized uncertainty principle (GUP), we used the Hamilton–Jacobi approach to calculate the tunneling probability for a massive scalar, Dirac, and vector boson particles from the [Formula: see text]-dimensional NCR-BTZ black hole. We found that the modified Hawking temperature of the black hole depends on the black hole properties, on the tunneling particle properties, on the noncommutative parameter, and on the GUP parameter. Using the modified Hawking temperature, we calculated the modified heat capacity, and then we discussed the local thermodynamic stability conditions for the black hole. The black hole may undergo a first-type phase transition to become stable under the scalar particle tunneling whereas, it might undergoes both the first and the second-type phase transitions under the both Dirac and vector boson particles tunneling process. Furthermore, we calculated the Gibbs free energy of the black hole, and we investigated the global stability conditions. We observed that Hawking–Page phase transition may occur in the presence of the quantum gravity effect under the tunneling process of scalar, Dirac, and vector boson particles. In the context of quantum gravity effect, we also derived the modified equation of state to investigate the critical behavior of the commutative rotating BTZ black hole. Finally, we shown that Van der Waals-like phase transition may occur in the context of tunneling process of both Dirac and vector boson particle, whereas it may not occur for the tunneling of scalar particle.


2018 ◽  
Vol 33 (12) ◽  
pp. 1850070 ◽  
Author(s):  
I. Ablu Meitei ◽  
T. Ibungochouba Singh ◽  
S. Gayatri Devi ◽  
N. Premeshwari Devi ◽  
K. Yugindro Singh

Tunneling of scalar particles across the event horizon of rotating BTZ black hole is investigated using the Generalized Uncertainty Principle to study the corrected Hawking temperature and entropy in the presence of quantum gravity effects. We have determined explicitly the various correction terms in the entropy of rotating BTZ black hole including the logarithmic term of the Bekenstein–Hawking entropy [Formula: see text], the inverse term of [Formula: see text] and terms with inverse powers of [Formula: see text], in terms of properties of the black hole and the emitted particles — mass, energy and angular momentum. In the presence of quantum gravity effects, for the emission of scalar particles, the Hawking radiation and thermodynamics of rotating BTZ black hole are observed to be related to the metric element, hence to the curvature of space–time.


2020 ◽  
Vol 35 (27) ◽  
pp. 2050225 ◽  
Author(s):  
Riasat Ali ◽  
Muhammad Asgher ◽  
M. F. Malik

This paper is devoted to the tunneling radiation and quantum gravity effect on tunneling radiation of neutral regular black hole in Rastall gravity. We analyzed the tunneling radiation and Hawking temperature of neutral regular black hole by applying the Hamilton-Jacobi ansatz phenomenon. Lagrangian wave equation have been investigated by generalized uncertainty principle (GUP), using the WKB-approximation and calculated the tunneling rate as well as temperature. Furthermore, we analyzed the temperature of this neutral regular black hole in the presence of gravity. The stability and instability of neutral regular black hole are also analyzed.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Ganim Gecim ◽  
Yusuf Sucu

In this study, the Generalized Uncertainty Principle (GUP) effect on the Hawking radiation formed by tunneling of a massive vector boson particle from the 2+1 dimensional new-type black hole was investigated. We used modified massive vector boson equation based on the GUP. Then, the Hamilton-Jacobi quantum tunneling approach was used to work out the tunneling probability of the massive vector boson particle and Hawking temperature of the black hole. Due to the GUP effect, the modified Hawking temperature was found to depend on the black hole properties, on the AdS3 radius, and on the energy, mass, and total angular momentum of the tunneling massive vector boson. In the light of these results, we also observed that modified Hawking temperature increases by the total angular momentum of the particle while it decreases by the energy and mass of the particle and the graviton mass. Also, in the context of the GUP, we see that the Hawking temperature due to the tunneling massive vector boson is completely different from both that of the spin-0 scalar and that of the spin-1/2 Dirac particles obtained in the previous study. We also calculate the heat capacity of the black hole using the modified Hawking temperature and then discuss influence of the GUP on the stability of the black hole.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Ganim Gecim ◽  
Yusuf Sucu

We carry out the Hawking temperature of a 2+1-dimensional circularly symmetric traversable wormhole in the framework of the generalized uncertainty principle (GUP). Firstly, we introduce the modified Klein-Gordon equation of the spin-0 particle, the modified Dirac equation of the spin-1/2 particle, and the modified vector boson equation of the spin-1 particle in the wormhole background, respectively. Given these equations under the Hamilton-Jacobi approach, we analyze the GUP effect on the tunneling probability of these particles near the trapping horizon and, subsequently, on the Hawking temperature of the wormhole. Furthermore, we have found that the modified Hawking temperature of the wormhole is determined by both wormhole’s and tunneling particle’s properties and indicated that the wormhole has a positive temperature similar to that of a physical system. This case indicates that the wormhole may be supported by ordinary (nonexotic) matter. In addition, we calculate the Unruh-Verlinde temperature of the wormhole by using Kodama vectors instead of time-like Killing vectors and observe that it equals to the standard Hawking temperature of the wormhole.


2019 ◽  
Vol 28 (08) ◽  
pp. 1950102
Author(s):  
Muhammad Rizwan ◽  
Khalil Ur Rehman

By considering the quantum gravity effects based on generalized uncertainty principle, we give a correction to Hawking radiation of charged fermions from accelerating and rotating black holes. Using Hamilton–Jacobi approach, we calculate the corrected tunneling probability and the Hawking temperature. The quantum corrected Hawking temperature depends on the black hole parameters as well as quantum number of emitted particles. It is also seen that a remnant is formed during the black hole evaporation. In addition, the corrected temperature is independent of an angle [Formula: see text] which contradicts the claim made in the literature.


Sign in / Sign up

Export Citation Format

Share Document