Joule–Thomson expansion and quasinormal modes of regular non-minimal magnetic black hole

2020 ◽  
Vol 35 (36) ◽  
pp. 2050298
Author(s):  
Abdul Jawad ◽  
Muhammad Yasir ◽  
Shamaila Rani

The Joule–Thomson effect and quasinormal modes (QNM) onto regular non-minimal magnetic charged black hole with a cosmological constant are being investigated. For this purpose, we extract some thermodynamical parameters such as pressure [Formula: see text] and mass [Formula: see text] in the presence of magnetic [Formula: see text] as well as electric [Formula: see text] charge. These parameters lead to inversion temperature [Formula: see text], pressure [Formula: see text] and corresponding isenthalpic curves. We introduce the tortoise coordinate and the Klein–Gordon wave equation which leads to the second-order ordinary Schrödinger equation. We find out the complex frequencies of QNMs through the massless scalar field perturbation which satisfy boundary conditions by using the first-order Wentzel–Kramers–Brillouin (WKB) technique.

Open Physics ◽  
2008 ◽  
Vol 6 (2) ◽  
Author(s):  
Chunrui Ma ◽  
Yuanxing Gui ◽  
Wei Wang ◽  
Fujun Wang

AbstractWe present the quasinormal frequencies of the massive scalar field in the background of a Schwarzchild black hole surrounded by quintessence with the third-order WKB method. The mass of the scalar field u plays an important role in studying the quasinormal frequencies, the real part of the frequencies increases linearly as mass of the field u increases, while the imaginary part in absolute value decreases linearly which leads to damping more slowly than the massless scalar field. The frequencies have a limited value, so it is easier to detect the quasinormal modes. Moreover, owing to the presence of the quintessence, the massive scalar field damps more slowly.


2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
M Sharif ◽  
Qanitah Ama-Tul-Mughani

Abstract This paper is devoted to deriving an analytic expression of the greybody factor for a rotating black hole surrounded by quintessence. Primarily, we transform the radial part of the Klein–Gordon equation into the standard Schrödinger equation through the tortoise coordinate to analyze the profile of the effective potential. Asymptotic solutions are obtained in two distinct regions, namely, the black hole and cosmological horizons determined by the quintessential field. We then extrapolate these solutions and match them smoothly in an intermediate region to extend the viability over the whole radial regime. To elaborate the significance of the analytical solution, we evaluate the emission rates and absorption cross-section for the massless scalar fields. It is found that the accelerated expansion of the universe corresponding to smaller values of the state parameter minimizes the effective potential and consequently increases the emission process of the scalar field particles.


SURG Journal ◽  
2010 ◽  
Vol 4 (1) ◽  
pp. 87-92
Author(s):  
Shannon Potter ◽  
Luis Lehner

A perturbed black hole spacetime emits gravitational waves possessing quasinormal modes that are characteristic of the black hole itself. We use a massless scalar field as an analog to a gravitational wave to find the quasinormal modes emitted by both a Schwarzschild black hole and a new alternative black hole model which places the Schwarzschild black hole in an aether—a zero density, negative pressure perfect fluid. The later model was proposed as an alternative explanation for accelerated cosmic expansion [1]. We construct a computational code to study both systems numerically and obtain the corresponding quasinormal modes. We find that the quasinormal modes of a black hole in an aether are distinguishable from those of a Schwarzschild black hole and so, in principle, gravitational wave observations could be exploited to determine if either black hole solution represents those existing in our universe.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Deyou Chen ◽  
Chuanhong Gao ◽  
Xianming Liu ◽  
Chengye Yu

AbstractIn this paper, we investigate the photon sphere, shadow radius and quasinormal modes of a four-dimensional charged Einstein–Gauss–Bonnet black hole. The perturbation of a massless scalar field in the black hole’s background is adopted. The quasinormal modes are gotten by the 6th order WKB approximation approach and shadow radius, respectively. When the value of the Gauss–Bonnet coupling constant increase, the values of the real parts of the quasinormal modes increase and those of the imaginary parts decrease. The coincidence degrees of quasinormal modes derived by the two approaches increases with the increase of the values of the Gauss–Bonnet coupling constant and multipole number. It shows the correspondence between the shadow and test field in the four-dimensional Einstein–Gauss–Bonnet–Maxwell gravity. The radii of the photon sphere and shadow increase with the decrease of the Gauss–Bonnet coupling constant.


2015 ◽  
Vol 24 (14) ◽  
pp. 1550104 ◽  
Author(s):  
Sharmanthie Fernando

The purpose of this paper is to study quasinormal modes (QNMs) of a regular black hole with a cosmological constant due to scalar perturbations. A detailed study of QNMs frequencies for the massless scalar field was done by varying the parameters of the theory such as mass, magnetic charge, cosmological constant and the spherical harmonic index. We have employed the sixth-order WKB approximation to compute the QNMs frequencies. We have also proved analytically that the [Formula: see text] mode for the massless field reaches a constant value at late times. We have approximated the near-extreme regular-de Sitter (dS) black hole potential with the Pöschl–Teller potential to obtain exact frequencies. The null geodesics of the regular-de Sitter black hole is employed to describe the QNMs frequencies at the eikonal limit ([Formula: see text]).


2010 ◽  
Vol 19 (01) ◽  
pp. 63-78 ◽  
Author(s):  
OWEN PAVEL FERNANDEZ PIEDRA ◽  
JEFERSON de OLIVEIRA

We investigate the influence of vacuum polarization of quantum massive fields on the scalar sector of quasinormal modes in spherically symmetric black holes. We consider the evolution of a massless scalar field on the space–time corresponding to a charged semiclassical black hole, consisting of the quantum-corrected geometry of a Reissner–Nordström black hole dressed by a quantum massive scalar field in the large mass limit. Using a sixth order WKB approach we find a shift in the quasinormal mode frequencies due to vacuum polarization.


2017 ◽  
Vol 26 (10) ◽  
pp. 1750111 ◽  
Author(s):  
Chen Wu

We evaluate the quasinormal modes of massless scalar field around Reissner–Nordström black hole surrounded by a static and spherically symmetric quintessence using the continued fraction method. The appropriate Frobenius series for three special cases of the quintessence parameter [Formula: see text] and [Formula: see text] are derived successfully. We show the variation of quasinormal frequencies with charge of the black hole and the quintessential parameters. The numerical results show that quintessence field decreases oscillation frequencies of all angular momentum [Formula: see text] modes and increases the damping time of [Formula: see text] modes.


2015 ◽  
Vol 30 (11) ◽  
pp. 1550057 ◽  
Author(s):  
Sharmanthie Fernando

In this paper, we have studied a black hole in de Sitter space which has a conformally coupled scalar field in the background. This black hole is also known as the MTZ black hole. We have obtained exact values for the quasi-normal mode (QNM) frequencies under massless scalar field perturbations. We have demonstrated that when the black hole is near-extremal, that the wave equation for the massless scalar field simplifies to a Schrödinger type equation with the well-known Pöschl–Teller potential. We have also used sixth-order WKB approximation to compute QNM frequencies to compare with exact values obtained via the Pöschl–Teller method for comparison. As an application, we have obtained the area spectrum using modified Hods approach and show that it is equally spaced.


Sign in / Sign up

Export Citation Format

Share Document