scholarly journals Dark matter from a dark connection

2021 ◽  
pp. 2150134
Author(s):  
Ranit Das ◽  
Chethan Krishnan

In the first part of this note, we observe that a non-Riemannian piece in the affine connection (a “dark connection”) leads to an algebraically determined, conserved, symmetric 2-tensor in the Einstein field equations that is a natural dark matter candidate. The only other effect it has, is through its coupling to standard model fermions via covariant derivatives. If the local dark matter density is the result of a background classical dark connection, these Yukawa-like mass corrections are minuscule ([Formula: see text] for terrestrial fermions) and none of the tests of general relativity or the equivalence principle are affected. In the second part of the note, we give dynamics to the dark connection and show how it can be re-interpreted in terms of conventional dark matter particles. The simplest way to do this is to treat it as a composite field involving scalars or vectors. The (pseudo-)scalar model naturally has a perturbative shift-symmetry and leads to versions of the Fuzzy Dark Matter (FDM) scenario that has recently become popular (e.g. arXiv:1610.08297) as an alternative to WIMPs. A vector model with a [Formula: see text]-parity falls into the Planckian Interacting Dark Matter (PIDM) paradigm, introduced in arXiv:1511.03278. It is possible to construct versions of these theories that yield the correct relic density, fit with inflation and are falsifiable in the next round of CMB experiments. Our work is an explicit demonstration that the meaningful distinction is not between gravity modification and dark matter, but between theories with extra fields and those without.

2019 ◽  
Vol 34 (23) ◽  
pp. 1950188
Author(s):  
Nayan Sarkar ◽  
Susmita Sarkar ◽  
Farook Rahaman ◽  
P. K. F. Kuhfittig ◽  
G. S. Khadekar

It is well-known that traversable wormholes are valid solutions of the Einstein field equations, but these structures can only be maintained by violating the null energy condition. In this paper, we have obtained such wormhole solutions in an isothermal galactic halo, as well as in a void. We have shown that the null energy condition is violated, with the help of a suitable redshift function obtained from flat galactic rotation curves.


2017 ◽  
Vol 28 (07) ◽  
pp. 1750096
Author(s):  
Stanislav Klimenko ◽  
Igor Nikitin ◽  
Lialia Nikitina

We study a static spherically symmetric problem with a black hole and radially directed geodesic flows of dark matter. The obtained solutions have the following properties. At large distances, the gravitational field produces constant velocities of circular motion, i.e. flat rotation curves. At smaller distances, the field switches to Newtonian regime, then to Schwarzschild regime. Deviations from Schwarzschild regime start below the gravitational radius. The dark matter prevents the creation of event horizon, instead, a spherical region possessing extremely large redshift is created. The structure of space-time for the obtained solutions is investigated and the implications for the models of the galaxies are discussed.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Leonardo Coito ◽  
Carlos Faubel ◽  
Juan Herrero-García ◽  
Arcadi Santamaria

Abstract We study the case of a pseudo-scalar dark matter candidate which emerges from a complex scalar singlet, charged under a global U(1) symmetry, which is broken both explicitly and spontaneously. The pseudo-scalar is naturally stabilized by the presence of a remnant discrete symmetry: dark CP. We study and compare the phenomenology of several simplified models with only one explicit symmetry breaking term. We find that several regions of the parameter space are able to reproduce the observed dark matter abundance while respecting direct detection and invisible Higgs decay limits: in the resonances of the two scalars, featuring the known as forbidden or secluded dark matter, and through non-resonant Higgs-mediated annihilations. In some cases, combining different measurements would allow one to distinguish the breaking pattern of the symmetry. Moreover, this setup admits a light DM candidate at the sub-GeV scale. We also discuss the situation where more than one symmetry breaking term is present. In that case, the dark CP symmetry may be spontaneously broken, thus spoiling the stability of the dark matter candidate. Requiring that this does not happen imposes a constraint on the allowed parameter space. Finally, we consider an effective field theory approach valid in the pseudo-Nambu-Goldstone boson limit and when the U(1) breaking scale is much larger than the electroweak scale.


2019 ◽  
Vol 34 (19) ◽  
pp. 1950103
Author(s):  
Charles Schwartz

This work expands previous efforts, within the classical theories of Special and General Relativity, to include tachyons (faster-than-light particles) along with ordinary (slower-than-light) particles at any energy. The objective here is to construct a Hamiltonian that includes both the particles and the gravitational field that they produce. We do this with a linear approximation for the Einstein field equations; and we also assume a time-independent gravitational metric implied by a static picture of the particles’ motion. The resulting formulas will allow serious modeling to test the idea that cosmic background neutrinos may be tachyons, which can produce the observed gravitational effects now ascribed to some mysterious Dark Matter.


2021 ◽  
Author(s):  
Shivam S Naarayan

The paper presents modifications to Einstein field equations (EFEs) based on the model proposed in the working paper, 'Rippling 3-Riemannian structure describing gravity with dark matter effects'. The model proposes matter and energy are separate entities and energy is a property of three dimensional probabilistic structure spanning space. Mass interacts by binding energy density causing variations in length and time scales, mathematically equivalent to spacetime curvature in general relativity. Gravity is thus described as flow and distribution of energy density. Bounded energy density is the additional source of gravity leading to dark matter observations. The results of the model proposes two EFEs for large and largest scales and further predicts dependence of cosmological constant on space and time coordinates.


Synthese ◽  
2021 ◽  
Author(s):  
Antonio Vassallo

AbstractThe dynamics of general relativity is encoded in a set of ten differential equations, the so-called Einstein field equations. It is usually believed that Einstein’s equations represent a physical law describing the coupling of spacetime with material fields. However, just six of these equations actually describe the coupling mechanism: the remaining four represent a set of differential relations known as Bianchi identities. The paper discusses the physical role that the Bianchi identities play in general relativity, and investigates whether these identities—qua part of a physical law—highlight some kind of a posteriori necessity in a Kripkean sense. The inquiry shows that general relativistic physics has an interesting bearing on the debate about the metaphysics of the laws of nature.


Author(s):  
Hyungjin Kim

Abstract Primordial black holes are a viable dark matter candidate. They decay via Hawking evaporation. Energetic particles from the Hawking radiation interact with interstellar gas, depositing their energy as heat and ionization. For a sufficiently high Hawking temperature, fast electrons produced by black holes deposit a substantial fraction of energy as heat through the Coulomb interaction. Using the dwarf galaxy Leo T, we place an upper bound on the fraction of primordial black hole dark matter. For M < 5 × 10−17M⊙, our bound is competitive with or stronger than other bounds.


Sign in / Sign up

Export Citation Format

Share Document