scholarly journals Artificial neural network spectral light curve template for type Ia supernovae and its cosmological constraints

2021 ◽  
pp. 2150149
Author(s):  
Qiao-Bin Cheng ◽  
Chao-Jun Feng ◽  
Xiang-Hua Zhai ◽  
Xin-Zhou Li

The spectral energy distribution (SED) sequence for type Ia supernovae (SN Ia) is modeled by an artificial neural network. The SN Ia luminosity is characterized as a function of phase, wavelength, a color parameter and a decline rate parameter. After training and testing the neural network, the SED sequence could give both the spectrum with wavelength range from 3000 Åto 8000 Åand the light curve with phase from 20 days before to 50 days after the maximum luminosity for the supernovae with different colors and decline rates. Therefore, we call this the Artificial Neural Network Spectral Light Curve Template (ANNSLCT) model. We retrain the Joint Light-curve Analysis (JLA) supernova sample by using the ANNSLCT model and obtain the parameters for each supernova to make a constraint on the cosmological [Formula: see text]CDM model. We find that the best fitting values of these parameters are very close to those from the JLA sample trained with the Spectral Adaptive Lightcurve Template 2 (SALT2) model. It is expectable that the ANNSLCT model has potential to analyze more SN Ia multi-color light curves measured in future observation projects.

2018 ◽  
Vol 97 (12) ◽  
Author(s):  
Qiao-Bin Cheng ◽  
Chao-Jun Feng ◽  
Xiang-Hua Zhai ◽  
Xin-Zhou Li

2019 ◽  
Vol 491 (4) ◽  
pp. 5991-5999 ◽  
Author(s):  
Ryan J Foley ◽  
Samantha L Hoffmann ◽  
Lucas M Macri ◽  
Adam G Riess ◽  
Peter J Brown ◽  
...  

ABSTRACT The Type Ia supernovae (SNe Ia) 2011by, hosted in NGC 3972, and 2011fe, hosted in M101, are optical ‘twins,’ having almost identical optical light-curve shapes, colours, and near-maximum-brightness spectra. However, SN 2011fe had significantly more ultraviolet (UV; 1600 < λ < 2500 Å) flux than SN 2011by before and at peak luminosity. Several theoretical models predict that SNe Ia with higher progenitor metallicity should (1) have additional UV opacity and thus lower UV flux; (2) have an essentially unchanged optical spectral-energy distribution; (3) have a similar optical light-curve shape; and (4) because of the excess neutrons, produce more stable Fe-group elements at the expense of radioactive 56Ni and thus have a lower peak luminosity. Following these predictions, Foley and Kirshner suggested that the difference in UV flux between SNe 2011by and 2011fe was the result of their progenitors having significantly different metallicities. They also measured a large, but insignificant, difference between the peak absolute magnitudes of the SNe (ΔMV, peak = 0.60 ± 0.36 mag), with SN 2011fe being more luminous. We present a new Cepheid-based distance to NGC 3972, substantially improving the precision of the distance measurement for SN 2011by. With these new data, we determine that the SNe have significantly different peak luminosities (ΔMV, peak = 0.335 ± 0.069 mag). Consequently, SN 2011fe produced 38 per cent more 56Ni than SN 2011by, consistent with predictions for progenitor metallicity differences for these SNe, although alternative models may also explain this difference. We discuss how progenitor metallicity differences can contribute to the intrinsic scatter for light-curve-shape-corrected SN luminosities, the use of ‘twin’ SNe for measuring distances, and implications for using SNe Ia for constraining cosmological parameters.


2020 ◽  
Vol 636 ◽  
pp. A46 ◽  
Author(s):  
P.-F. Léget ◽  
E. Gangler ◽  
F. Mondon ◽  
G. Aldering ◽  
P. Antilogus ◽  
...  

Context. Type Ia supernovae (SNe Ia) are widely used to measure the expansion of the Universe. Improving distance measurements of SNe Ia is one technique to better constrain the acceleration of expansion and determine its physical nature. Aims. This document develops a new SNe Ia spectral energy distribution (SED) model, called the SUpernova Generator And Reconstructor (SUGAR), which improves the spectral description of SNe Ia, and consequently could improve the distance measurements. Methods. This model was constructed from SNe Ia spectral properties and spectrophotometric data from the Nearby Supernova Factory collaboration. In a first step, a principal component analysis-like method was used on spectral features measured at maximum light, which allowed us to extract the intrinsic properties of SNe Ia. Next, the intrinsic properties were used to extract the average extinction curve. Third, an interpolation using Gaussian processes facilitated using data taken at different epochs during the lifetime of an SN Ia and then projecting the data on a fixed time grid. Finally, the three steps were combined to build the SED model as a function of time and wavelength. This is the SUGAR model. Results. The main advancement in SUGAR is the addition of two additional parameters to characterize SNe Ia variability. The first is tied to the properties of SNe Ia ejecta velocity and the second correlates with their calcium lines. The addition of these parameters, as well as the high quality of the Nearby Supernova Factory data, makes SUGAR an accurate and efficient model for describing the spectra of normal SNe Ia as they brighten and fade. Conclusions. The performance of this model makes it an excellent SED model for experiments like the Zwicky Transient Facility, the Large Synoptic Survey Telescope, or the Wide Field Infrared Survey Telescope.


2020 ◽  
Vol 493 (4) ◽  
pp. 5617-5624
Author(s):  
Doron Kushnir ◽  
Eli Waxman

ABSTRACT The finite time, τdep, over which positrons from β+ decays of 56Co deposit energy in type Ia supernovae ejecta lead, in case the positrons are trapped, to a slower decay of the bolometric luminosity compared to an exponential decline. Significant light-curve flattening is obtained when the ejecta density drops below the value for which τdep equals the 56Co lifetime. We provide a simple method to accurately describe this ‘delayed deposition’ effect, which is straightforward to use for analysis of observed light curves. We find that the ejecta heating is dominated by delayed deposition typically from 600 to 1200 d, and only later by longer lived isotopes 57Co and 55Fe decay (assuming solar abundance). For the relatively narrow 56Ni velocity distributions of commonly studied explosion models, the modification of the light curve depends mainly on the 56Ni mass-weighted average density, 〈ρ〉t3. Accurate late-time bolometric light curves, which may be obtained with JWST far-infrared (far-IR) measurements, will thus enable to discriminate between explosion models by determining 〈ρ〉t3 (and the 57Co and 55Fe abundances). The flattening of light curves inferred from recent observations, which is uncertain due to the lack of far-IR data, is readily explained by delayed deposition in models with $\langle \rho \rangle t^{3} \approx 0.2\, \mathrm{M}_{\odot }\, (10^{4}\, \textrm{km}\, \textrm{s}^{-1})^{-3}$, and does not imply supersolar 57Co and 55Fe abundances.


2005 ◽  
Vol 192 ◽  
pp. 525-533
Author(s):  
Weidong Li ◽  
Alexei V. Filippenko

SummaryObservations of Type Ia supernovae (SNe Ia) reveal correlations between their luminosities and light-curve shapes, and between their spectral sequence and photometric sequence. Assuming SNe Ia do not evolve at different redshifts, the Hubble diagram of SNe Ia may indicate an accelerating Universe, the signature of a cosmological constant or other forms of dark energy. Several studies raise concerns about the evolution of SNe Ia (e.g., the peculiarity rate, the rise time, and the color of SNe Ia at different redshifts), but all these studies suffer from the difficulties of obtaining high-quality spectroscopy and photometry for SNe Ia at high redshifts. There are also some troubling cases of SNe Ia that provide counter examples to the observed correlations, suggesting that a secondary parameter is necessary to describe the whole SN Ia family. Understanding SNe Ia both observationally and theoretically will be the key to boosting confidence in the SN Ia cosmological results.


2020 ◽  
Vol 499 (4) ◽  
pp. 5121-5135
Author(s):  
M V Pruzhinskaya ◽  
A K Novinskaya ◽  
N Pauna ◽  
P Rosnet

ABSTRACT Type Ia Supernovae (SNe Ia) are widely used to measure distances in the Universe. Despite the recent progress achieved in SN Ia standardization, the Hubble diagram still shows some remaining intrinsic dispersion. The remaining scatter in supernova luminosity could be due to the environmental effects that are accounted for as mass step correction in the current cosmological analyses. In this work, we compare the local and global colour (U − V), the local star formation rate, and the host stellar mass to the host galaxy morphology. The observed trends suggest that the host galaxy morphology is a relevant parameter to characterize the SN Ia environment. Therefore, we study the influence of host galaxy morphology on light-curve parameters of SNe Ia from the pantheon cosmological supernova sample. We determine the Hubble morphological type of host galaxies for a subsample of 330 SNe Ia. We confirm that the salt2 stretch parameter x1 depends on the host morphology with the p-value ∼10−14. The supernovae with lower stretch value are hosted mainly by elliptical and lenticular galaxies. No correlation for the salt2 colour parameter c is found. We also examine Hubble diagram residuals for supernovae hosted by ‘early-type’ and ‘late-type’ morphological groups of galaxies. The analysis reveals that the mean distance modulus residual in early-type galaxies is smaller than the one in late-type galaxies, which means that early-type galaxies contain brighter supernovae after stretch and colour corrections. However, we do not observe any difference in the residual dispersion for these two morphological groups. The obtained results are in the line with other analyses showing environmental dependence of SN Ia light-curve parameters and luminosity. We confirm the importance of including a host galaxy parameter into the standardization procedure of SNe Ia for further cosmological studies.


2017 ◽  
Vol 474 (3) ◽  
pp. 3516-3522 ◽  
Author(s):  
Yu-Yang Wang ◽  
F Y Wang

Abstract In this paper, we study an anisotropic universe model with Bianchi-I metric using Joint light-curve analysis (JLA) sample of Type Ia supernovae (SNe Ia). Because light-curve parameters of SNe Ia vary with different cosmological models and SNe Ia samples, we fit the SNe Ia light-curve parameters and cosmological parameters simultaneously employing Markov chain Monte Carlo method. Therefore, the results on the amount of deviation from isotropy of the dark energy equation of state (δ), and the level of anisotropy of the large-scale geometry (Σ0) at present, are totally model-independent. The constraints on the skewness and cosmic shear are −0.101 < δ < 0.071 and −0.007 < Σ0 < 0.008. This result is consistent with a standard isotropic universe (δ = Σ0 = 0). However, a moderate level of anisotropy in the geometry of the Universe and the equation of state of dark energy, is allowed. Besides, there is no obvious evidence for a preferred direction of anisotropic axis in this model.


2018 ◽  
Vol 483 (4) ◽  
pp. 5045-5076 ◽  
Author(s):  
S Papadogiannakis ◽  
A Goobar ◽  
R Amanullah ◽  
M Bulla ◽  
S Dhawan ◽  
...  

2018 ◽  
Vol 609 ◽  
pp. A72 ◽  
Author(s):  
Suhail Dhawan ◽  
Saurabh W. Jha ◽  
Bruno Leibundgut

The most precise local measurements of H0 rely on observations of Type Ia supernovae (SNe Ia) coupled with Cepheid distances to SN Ia host galaxies. Recent results have shown tension comparing H0 to the value inferred from CMB observations assuming ΛCDM, making it important to check for potential systematic uncertainties in either approach. To date, precise local H0 measurements have used SN Ia distances based on optical photometry, with corrections for light curve shape and colour. Here, we analyse SNe Ia as standard candles in the near-infrared (NIR), where luminosity variations in the supernovae and extinction by dust are both reduced relative to the optical. From a combined fit to 9 nearby calibrator SNe with host Cepheid distances from Riess et al. (2016) and 27 SNe in the Hubble flow, we estimate the absolute peak J magnitude MJ = −18.524 ± 0.041 mag and H0 = 72.8 ± 1.6 (statistical) ±2.7 (systematic) km s-1 Mpc-1. The 2.2% statistical uncertainty demonstrates that the NIR provides a compelling avenue to measuring SN Ia distances, and for our sample the intrinsic (unmodeled) peak J magnitude scatter is just ~0.10 mag, even without light curve shape or colour corrections. Our results do not vary significantly with different sample selection criteria, though photometric calibration in the NIR may be a dominant systematic uncertainty. Our findings suggest that tension in the competing H0 distance ladders is likely not a result of supernova systematics that could be expected to vary between optical and NIR wavelengths, like dust extinction. We anticipate further improvements in H0 with a larger calibrator sample of SNe Ia with Cepheid distances, more Hubble flow SNe Ia with NIR light curves, and better use of the full NIR photometric data set beyond simply the peak J-band magnitude.


Sign in / Sign up

Export Citation Format

Share Document